More implementation

This commit is contained in:
momo5502 2022-04-02 09:13:52 +02:00
parent 0a26326bba
commit 3cc5f6ade2
3 changed files with 413 additions and 3 deletions

52
src/driver/assembly2.asm Normal file
View File

@ -0,0 +1,52 @@
;++
;
; Copyright (c) Alex Ionescu. All rights reserved.
;
; Module:
;
; shvvmxhvx64.asm
;
; Abstract:
;
; This module implements the AMD64-specific SimpleVisor VMENTRY routine.
;
; Author:
;
; Alex Ionescu (@aionescu) 16-Mar-2016 - Initial version
;
; Environment:
;
; Kernel mode only.
;
;--
include ksamd64.inc
.code
extern ShvVmxEntryHandler:proc
extern ShvOsCaptureContext:proc
ShvVmxEntry PROC
push rcx ; save the RCX register, which we spill below
lea rcx, [rsp+8h] ; store the context in the stack, bias for
; the return address and the push we just did.
call ShvOsCaptureContext ; save the current register state.
; note that this is a specially written function
; which has the following key characteristics:
; 1) it does not taint the value of RCX
; 2) it does not spill any registers, nor
; expect home space to be allocated for it
mov rcx, [rsp+CxRsp+8h]
add rcx, 8h
mov [rsp+CxRsp+8h], rcx
pop rcx
mov [rsp+CxRcx], rcx
jmp ShvVmxEntryHandler ; jump to the C code handler. we assume that it
; compiled with optimizations and does not use
; home space, which is true of release builds.
ShvVmxEntry ENDP
end

View File

@ -36,17 +36,20 @@ namespace
return is_vmx_supported() && is_vmx_available(); return is_vmx_supported() && is_vmx_available();
} }
#define HYPERV_HYPERVISOR_PRESENT_BIT 0x80000000
#define HYPERV_CPUID_INTERFACE 0x40000001
bool is_hypervisor_present() bool is_hypervisor_present()
{ {
cpuid_eax_01 data{}; cpuid_eax_01 data{};
__cpuid(reinterpret_cast<int*>(&data), CPUID_VERSION_INFORMATION); __cpuid(reinterpret_cast<int*>(&data), CPUID_VERSION_INFORMATION);
if ((data.cpuid_feature_information_ecx.flags & 0x80000000) == 0) if ((data.cpuid_feature_information_ecx.flags & HYPERV_HYPERVISOR_PRESENT_BIT) == 0)
{ {
return false; return false;
} }
int32_t cpuid_data[4] = {0}; int32_t cpuid_data[4] = {0};
__cpuid(cpuid_data, 0x40000001); __cpuid(cpuid_data, HYPERV_CPUID_INTERFACE);
return cpuid_data[0] == 'momo'; return cpuid_data[0] == 'momo';
} }
} }
@ -608,6 +611,361 @@ ShvUtilAdjustMsr(
return DesiredValue; return DesiredValue;
} }
extern "C" VOID
ShvOsCaptureContext(
_In_ PCONTEXT ContextRecord
)
{
//
// Windows provides a nice OS function to do this
//
RtlCaptureContext(ContextRecord);
}
extern "C" DECLSPEC_NORETURN
VOID
__cdecl
ShvOsRestoreContext2(
_In_ PCONTEXT ContextRecord,
_In_opt_ struct _EXCEPTION_RECORD* ExceptionRecord
);
DECLSPEC_NORETURN
VOID
ShvVpRestoreAfterLaunch(
VOID)
{
//
// Get the per-processor data. This routine temporarily executes on the
// same stack as the hypervisor (using no real stack space except the home
// registers), so we can retrieve the VP the same way the hypervisor does.
//
auto* vpData = (vmx::vm_state*)((uintptr_t)_AddressOfReturnAddress() +
sizeof(CONTEXT) -
KERNEL_STACK_SIZE);
//
// Record that VMX is now enabled by returning back to ShvVpInitialize with
// the Alignment Check (AC) bit set.
//
vpData->context_frame.EFlags |= EFLAGS_ALIGNMENT_CHECK_FLAG_FLAG;
//
// And finally, restore the context, so that all register and stack
// state is finally restored.
//
ShvOsRestoreContext2(&vpData->context_frame, nullptr);
}
VOID
ShvVmxHandleInvd(
VOID)
{
//
// This is the handler for the INVD instruction. Technically it may be more
// correct to use __invd instead of __wbinvd, but that intrinsic doesn't
// actually exist. Additionally, the Windows kernel (or HAL) don't contain
// any example of INVD actually ever being used. Finally, Hyper-V itself
// handles INVD by issuing WBINVD as well, so we'll just do that here too.
//
__wbinvd();
}
#define DPL_USER 3
#define DPL_SYSTEM 0
typedef struct _SHV_VP_STATE
{
PCONTEXT VpRegs;
uintptr_t GuestRip;
uintptr_t GuestRsp;
uintptr_t GuestEFlags;
UINT16 ExitReason;
UINT8 ExitVm;
} SHV_VP_STATE, *PSHV_VP_STATE;
VOID
ShvVmxHandleCpuid(
_In_ PSHV_VP_STATE VpState
)
{
INT32 cpu_info[4];
//
// Check for the magic CPUID sequence, and check that it is coming from
// Ring 0. Technically we could also check the RIP and see if this falls
// in the expected function, but we may want to allow a separate "unload"
// driver or code at some point.
//
if ((VpState->VpRegs->Rax == 0x41414141) &&
(VpState->VpRegs->Rcx == 0x42424242) &&
((ShvVmxRead(VMCS_GUEST_CS_SELECTOR) & SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK) == DPL_SYSTEM))
{
VpState->ExitVm = TRUE;
return;
}
//
// Otherwise, issue the CPUID to the logical processor based on the indexes
// on the VP's GPRs.
//
__cpuidex(cpu_info, (INT32)VpState->VpRegs->Rax, (INT32)VpState->VpRegs->Rcx);
//
// Check if this was CPUID 1h, which is the features request.
//
if (VpState->VpRegs->Rax == 1)
{
//
// Set the Hypervisor Present-bit in RCX, which Intel and AMD have both
// reserved for this indication.
//
cpu_info[2] |= HYPERV_HYPERVISOR_PRESENT_BIT;
}
else if (VpState->VpRegs->Rax == HYPERV_CPUID_INTERFACE)
{
//
// Return our interface identifier
//
cpu_info[0] = 'momo';
}
//
// Copy the values from the logical processor registers into the VP GPRs.
//
VpState->VpRegs->Rax = cpu_info[0];
VpState->VpRegs->Rbx = cpu_info[1];
VpState->VpRegs->Rcx = cpu_info[2];
VpState->VpRegs->Rdx = cpu_info[3];
}
VOID
ShvVmxHandleXsetbv(
_In_ PSHV_VP_STATE VpState
)
{
//
// Simply issue the XSETBV instruction on the native logical processor.
//
_xsetbv((UINT32)VpState->VpRegs->Rcx,
VpState->VpRegs->Rdx << 32 |
VpState->VpRegs->Rax);
}
VOID
ShvVmxHandleVmx(
_In_ PSHV_VP_STATE VpState
)
{
//
// Set the CF flag, which is how VMX instructions indicate failure
//
VpState->GuestEFlags |= 0x1; // VM_FAIL_INVALID
//
// RFLAGs is actually restored from the VMCS, so update it here
//
__vmx_vmwrite(VMCS_GUEST_RFLAGS, VpState->GuestEFlags);
}
VOID
ShvVmxHandleExit(
_In_ PSHV_VP_STATE VpState
)
{
//
// This is the generic VM-Exit handler. Decode the reason for the exit and
// call the appropriate handler. As per Intel specifications, given that we
// have requested no optional exits whatsoever, we should only see CPUID,
// INVD, XSETBV and other VMX instructions. GETSEC cannot happen as we do
// not run in SMX context.
//
switch (VpState->ExitReason)
{
case VMX_EXIT_REASON_EXECUTE_CPUID:
ShvVmxHandleCpuid(VpState);
break;
case VMX_EXIT_REASON_EXECUTE_INVD:
ShvVmxHandleInvd();
break;
case VMX_EXIT_REASON_EXECUTE_XSETBV:
ShvVmxHandleXsetbv(VpState);
break;
case VMX_EXIT_REASON_EXECUTE_VMCALL:
case VMX_EXIT_REASON_EXECUTE_VMCLEAR:
case VMX_EXIT_REASON_EXECUTE_VMLAUNCH:
case VMX_EXIT_REASON_EXECUTE_VMPTRLD:
case VMX_EXIT_REASON_EXECUTE_VMPTRST:
case VMX_EXIT_REASON_EXECUTE_VMREAD:
case VMX_EXIT_REASON_EXECUTE_VMRESUME:
case VMX_EXIT_REASON_EXECUTE_VMWRITE:
case VMX_EXIT_REASON_EXECUTE_VMXOFF:
case VMX_EXIT_REASON_EXECUTE_VMXON:
ShvVmxHandleVmx(VpState);
break;
default:
break;
}
//
// Move the instruction pointer to the next instruction after the one that
// caused the exit. Since we are not doing any special handling or changing
// of execution, this can be done for any exit reason.
//
VpState->GuestRip += ShvVmxRead(VMCS_VMEXIT_INSTRUCTION_LENGTH);
__vmx_vmwrite(VMCS_GUEST_RIP, VpState->GuestRip);
}
VOID
ShvOsUnprepareProcessor(
_In_ vmx::vm_state* VpData
)
{
//
// When running in VMX root mode, the processor will set limits of the
// GDT and IDT to 0xFFFF (notice that there are no Host VMCS fields to
// set these values). This causes problems with PatchGuard, which will
// believe that the GDTR and IDTR have been modified by malware, and
// eventually crash the system. Since we know what the original state
// of the GDTR and IDTR was, simply restore it now.
//
__lgdt(&VpData->special_registers.gdtr.limit);
__lidt(&VpData->special_registers.idtr.limit);
}
DECLSPEC_NORETURN
VOID
ShvVmxResume()
{
//
// Issue a VMXRESUME. The reason that we've defined an entire function for
// this sole instruction is both so that we can use it as the target of the
// VMCS when re-entering the VM After a VM-Exit, as well as so that we can
// decorate it with the DECLSPEC_NORETURN marker, which is not set on the
// intrinsic (as it can fail in case of an error).
//
__vmx_vmresume();
}
extern "C" DECLSPEC_NORETURN
VOID
ShvVmxEntryHandler()
{
PCONTEXT Context = (PCONTEXT)_AddressOfReturnAddress();
SHV_VP_STATE guestContext;
//
// Because we had to use RCX when calling ShvOsCaptureContext, its value
// was actually pushed on the stack right before the call. Go dig into the
// stack to find it, and overwrite the bogus value that's there now.
//
//Context->Rcx = *(UINT64*)((uintptr_t)Context - sizeof(Context->Rcx));
//
// Get the per-VP data for this processor.
//
auto* vpData = (vmx::vm_state*)((uintptr_t)(Context + 1) - KERNEL_STACK_SIZE);
//
// Build a little stack context to make it easier to keep track of certain
// guest state, such as the RIP/RSP/RFLAGS, and the exit reason. The rest
// of the general purpose registers come from the context structure that we
// captured on our own with RtlCaptureContext in the assembly entrypoint.
//
guestContext.GuestEFlags = ShvVmxRead(VMCS_GUEST_RFLAGS);
guestContext.GuestRip = ShvVmxRead(VMCS_GUEST_RIP);
guestContext.GuestRsp = ShvVmxRead(VMCS_GUEST_RSP);
guestContext.ExitReason = ShvVmxRead(VMCS_EXIT_REASON) & 0xFFFF;
guestContext.VpRegs = Context;
guestContext.ExitVm = FALSE;
//
// Call the generic handler
//
ShvVmxHandleExit(&guestContext);
//
// Did we hit the magic exit sequence, or should we resume back to the VM
// context?
//
if (guestContext.ExitVm != FALSE)
{
//
// Return the VP Data structure in RAX:RBX which is going to be part of
// the CPUID response that the caller (ShvVpUninitialize) expects back.
// Return confirmation in RCX that we are loaded
//
Context->Rax = (uintptr_t)vpData >> 32;
Context->Rbx = (uintptr_t)vpData & 0xFFFFFFFF;
Context->Rcx = 0x43434343;
//
// Perform any OS-specific CPU uninitialization work
//
ShvOsUnprepareProcessor(vpData);
//
// Our callback routine may have interrupted an arbitrary user process,
// and therefore not a thread running with a systemwide page directory.
// Therefore if we return back to the original caller after turning off
// VMX, it will keep our current "host" CR3 value which we set on entry
// to the PML4 of the SYSTEM process. We want to return back with the
// correct value of the "guest" CR3, so that the currently executing
// process continues to run with its expected address space mappings.
//
__writecr3(ShvVmxRead(VMCS_GUEST_CR3));
//
// Finally, restore the stack, instruction pointer and EFLAGS to the
// original values present when the instruction causing our VM-Exit
// execute (such as ShvVpUninitialize). This will effectively act as
// a longjmp back to that location.
//
Context->Rsp = guestContext.GuestRsp;
Context->Rip = (UINT64)guestContext.GuestRip;
Context->EFlags = (UINT32)guestContext.GuestEFlags;
//
// Turn off VMX root mode on this logical processor. We're done here.
//
__vmx_off();
}
else
{
//
// Because we won't be returning back into assembly code, nothing will
// ever know about the "pop rcx" that must technically be done (or more
// accurately "add rsp, 4" as rcx will already be correct thanks to the
// fixup earlier. In order to keep the stack sane, do that adjustment
// here.
//
//Context->Rsp += sizeof(Context->Rcx);
//
// Return into a VMXRESUME intrinsic, which we broke out as its own
// function, in order to allow this to work. No assembly code will be
// needed as RtlRestoreContext will fix all the GPRs, and what we just
// did to RSP will take care of the rest.
//
Context->Rip = (UINT64)ShvVmxResume;
}
//
// Restore the context to either ShvVmxResume, in which case the CPU's VMX
// facility will do the "true" return back to the VM (but without restoring
// GPRs, which is why we must do it here), or to the original guest's RIP,
// which we use in case an exit was requested. In this case VMX must now be
// off, and this will look like a longjmp to the original stack and RIP.
//
ShvOsRestoreContext2(Context, nullptr);
}
extern "C" VOID
ShvVmxEntry(
VOID);
void ShvVmxSetupVmcsForVp(vmx::vm_state* VpData) void ShvVmxSetupVmcsForVp(vmx::vm_state* VpData)
{ {