More refactoring, but state is broken :(

This commit is contained in:
momo5502 2022-04-09 13:43:11 +02:00
parent 62553eeae6
commit 6390a962f7

View File

@ -203,49 +203,47 @@ bool hypervisor::try_enable_core(const uint64_t system_directory_table_base)
#define MTRR_PAGE_SIZE 4096 #define MTRR_PAGE_SIZE 4096
#define MTRR_PAGE_MASK (~(MTRR_PAGE_SIZE-1)) #define MTRR_PAGE_MASK (~(MTRR_PAGE_SIZE-1))
VOID ShvVmxMtrrInitialize(vmx::state* VpData) void initialize_mtrr(vmx::launch_context& launch_context)
{ {
ia32_mtrr_capabilities_register mtrrCapabilities;
ia32_mtrr_physbase_register mtrrBase;
ia32_mtrr_physmask_register mtrrMask;
auto* launch_context = &VpData->launch_context;
// //
// Read the capabilities mask // Read the capabilities mask
// //
mtrrCapabilities.flags = __readmsr(IA32_MTRR_CAPABILITIES); ia32_mtrr_capabilities_register mtrr_capabilities{};
mtrr_capabilities.flags = __readmsr(IA32_MTRR_CAPABILITIES);
// //
// Iterate over each variable MTRR // Iterate over each variable MTRR
// //
for (auto i = 0u; i < mtrrCapabilities.variable_range_count; i++) for (auto i = 0u; i < mtrr_capabilities.variable_range_count; i++)
{ {
// //
// Capture the value // Capture the value
// //
mtrrBase.flags = __readmsr(IA32_MTRR_PHYSBASE0 + i * 2); ia32_mtrr_physbase_register mtrr_base{};
mtrrMask.flags = __readmsr(IA32_MTRR_PHYSMASK0 + i * 2); ia32_mtrr_physmask_register mtrr_mask{};
mtrr_base.flags = __readmsr(IA32_MTRR_PHYSBASE0 + i * 2);
mtrr_mask.flags = __readmsr(IA32_MTRR_PHYSMASK0 + i * 2);
// //
// Check if the MTRR is enabled // Check if the MTRR is enabled
// //
launch_context->mtrr_data[i].type = (UINT32)mtrrBase.type; launch_context.mtrr_data[i].type = static_cast<uint32_t>(mtrr_base.type);
launch_context->mtrr_data[i].enabled = (UINT32)mtrrMask.valid; launch_context.mtrr_data[i].enabled = static_cast<uint32_t>(mtrr_mask.valid);
if (launch_context->mtrr_data[i].enabled != FALSE) if (launch_context.mtrr_data[i].enabled != FALSE)
{ {
// //
// Set the base // Set the base
// //
launch_context->mtrr_data[i].physical_address_min = mtrrBase.page_frame_number * launch_context.mtrr_data[i].physical_address_min = mtrr_base.page_frame_number *
MTRR_PAGE_SIZE; MTRR_PAGE_SIZE;
// //
// Compute the length // Compute the length
// //
unsigned long bit; unsigned long bit;
_BitScanForward64(&bit, mtrrMask.page_frame_number * MTRR_PAGE_SIZE); _BitScanForward64(&bit, mtrr_mask.page_frame_number * MTRR_PAGE_SIZE);
launch_context->mtrr_data[i].physical_address_max = launch_context->mtrr_data[i]. launch_context.mtrr_data[i].physical_address_max = launch_context.mtrr_data[i].
physical_address_min + physical_address_min +
(1ULL << bit) - 1; (1ULL << bit) - 1;
} }
@ -279,15 +277,15 @@ uint32_t mtrr_adjust_effective_memory_type( vmx::launch_context& launch_context,
return candidate_memory_type; return candidate_memory_type;
} }
void ShvVmxEptInitialize(vmx::state* VpData) void initialize_ept(vmx::state& vm_state)
{ {
// //
// Fill out the EPML4E which covers the first 512GB of RAM // Fill out the EPML4E which covers the first 512GB of RAM
// //
VpData->epml4[0].read_access = 1; vm_state.epml4[0].read_access = 1;
VpData->epml4[0].write_access = 1; vm_state.epml4[0].write_access = 1;
VpData->epml4[0].execute_access = 1; vm_state.epml4[0].execute_access = 1;
VpData->epml4[0].page_frame_number = memory::get_physical_address(&VpData->epdpt) / vm_state.epml4[0].page_frame_number = memory::get_physical_address(&vm_state.epdpt) /
PAGE_SIZE; PAGE_SIZE;
// //
@ -302,13 +300,13 @@ void ShvVmxEptInitialize(vmx::state* VpData)
// //
// Construct EPT identity map for every 1GB of RAM // Construct EPT identity map for every 1GB of RAM
// //
__stosq((UINT64*)VpData->epdpt, temp_epdpte.flags, EPT_PDPTE_ENTRY_COUNT); __stosq(reinterpret_cast<uint64_t*>(vm_state.epdpt), temp_epdpte.flags, EPT_PDPTE_ENTRY_COUNT);
for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++) for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++)
{ {
// //
// Set the page frame number of the PDE table // Set the page frame number of the PDE table
// //
VpData->epdpt[i].page_frame_number = memory::get_physical_address(&VpData->epde[i][0]) / PAGE_SIZE; vm_state.epdpt[i].page_frame_number = memory::get_physical_address(&vm_state.epde[i][0]) / PAGE_SIZE;
} }
// //
@ -324,7 +322,7 @@ void ShvVmxEptInitialize(vmx::state* VpData)
// //
// Loop every 1GB of RAM (described by the PDPTE) // Loop every 1GB of RAM (described by the PDPTE)
// //
__stosq(reinterpret_cast<uint64_t*>(VpData->epde), temp_epde.flags, EPT_PDPTE_ENTRY_COUNT * EPT_PDE_ENTRY_COUNT); __stosq(reinterpret_cast<uint64_t*>(vm_state.epde), temp_epde.flags, EPT_PDPTE_ENTRY_COUNT * EPT_PDE_ENTRY_COUNT);
for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++) for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++)
{ {
// //
@ -332,20 +330,19 @@ void ShvVmxEptInitialize(vmx::state* VpData)
// //
for (auto j = 0; j < EPT_PDE_ENTRY_COUNT; j++) for (auto j = 0; j < EPT_PDE_ENTRY_COUNT; j++)
{ {
VpData->epde[i][j].page_frame_number = (i * 512) + j; vm_state.epde[i][j].page_frame_number = (i * 512) + j;
VpData->epde[i][j].memory_type = mtrr_adjust_effective_memory_type(VpData->launch_context, vm_state.epde[i][j].memory_type = mtrr_adjust_effective_memory_type(vm_state.launch_context,
VpData->epde[i][j].page_frame_number * _2MB, vm_state.epde[i][j].page_frame_number * _2MB,
MEMORY_TYPE_WRITE_BACK); MEMORY_TYPE_WRITE_BACK);
} }
} }
} }
bool bool enter_root_mode_on_cpu(vmx::state& vm_state)
ShvVmxEnterRootModeOnVp(vmx::state* VpData)
{ {
auto* launch_context = &VpData->launch_context; auto* launch_context = &vm_state.launch_context;
auto* Registers = &launch_context->special_registers; auto* registers = &launch_context->special_registers;
// //
// Ensure the the VMCS can fit into a single page // Ensure the the VMCS can fit into a single page
@ -354,7 +351,7 @@ ShvVmxEnterRootModeOnVp(vmx::state* VpData)
memset(&basic_register, 0, sizeof(basic_register)); memset(&basic_register, 0, sizeof(basic_register));
basic_register.flags = launch_context->msr_data[0].QuadPart; basic_register.flags = launch_context->msr_data[0].QuadPart;
if (basic_register.vmcs_size_in_bytes > PAGE_SIZE) if (basic_register.vmcs_size_in_bytes > static_cast<uint64_t>(PAGE_SIZE))
{ {
return FALSE; return FALSE;
} }
@ -362,7 +359,7 @@ ShvVmxEnterRootModeOnVp(vmx::state* VpData)
// //
// Ensure that the VMCS is supported in writeback memory // Ensure that the VMCS is supported in writeback memory
// //
if (basic_register.memory_type != MEMORY_TYPE_WRITE_BACK) if (basic_register.memory_type != static_cast<uint64_t>(MEMORY_TYPE_WRITE_BACK))
{ {
return FALSE; return FALSE;
} }
@ -396,34 +393,34 @@ ShvVmxEnterRootModeOnVp(vmx::state* VpData)
// //
// Capture the revision ID for the VMXON and VMCS region // Capture the revision ID for the VMXON and VMCS region
// //
VpData->vmx_on.revision_id = launch_context->msr_data[0].LowPart; vm_state.vmx_on.revision_id = launch_context->msr_data[0].LowPart;
VpData->vmcs.revision_id = launch_context->msr_data[0].LowPart; vm_state.vmcs.revision_id = launch_context->msr_data[0].LowPart;
// //
// Store the physical addresses of all per-LP structures allocated // Store the physical addresses of all per-LP structures allocated
// //
launch_context->vmx_on_physical_address = memory::get_physical_address(&VpData->vmx_on); launch_context->vmx_on_physical_address = memory::get_physical_address(&vm_state.vmx_on);
launch_context->vmcs_physical_address = memory::get_physical_address(&VpData->vmcs); launch_context->vmcs_physical_address = memory::get_physical_address(&vm_state.vmcs);
launch_context->msr_bitmap_physical_address = memory::get_physical_address(VpData->msr_bitmap); launch_context->msr_bitmap_physical_address = memory::get_physical_address(vm_state.msr_bitmap);
launch_context->ept_pml4_physical_address = memory::get_physical_address(&VpData->epml4); launch_context->ept_pml4_physical_address = memory::get_physical_address(&vm_state.epml4);
// //
// Update CR0 with the must-be-zero and must-be-one requirements // Update CR0 with the must-be-zero and must-be-one requirements
// //
Registers->cr0 &= launch_context->msr_data[7].LowPart; registers->cr0 &= launch_context->msr_data[7].LowPart;
Registers->cr0 |= launch_context->msr_data[6].LowPart; registers->cr0 |= launch_context->msr_data[6].LowPart;
// //
// Do the same for CR4 // Do the same for CR4
// //
Registers->cr4 &= launch_context->msr_data[9].LowPart; registers->cr4 &= launch_context->msr_data[9].LowPart;
Registers->cr4 |= launch_context->msr_data[8].LowPart; registers->cr4 |= launch_context->msr_data[8].LowPart;
// //
// Update host CR0 and CR4 based on the requirements above // Update host CR0 and CR4 based on the requirements above
// //
__writecr0(Registers->cr0); __writecr0(registers->cr0);
__writecr4(Registers->cr4); __writecr4(registers->cr4);
// //
// Enable VMX Root Mode // Enable VMX Root Mode
@ -766,9 +763,9 @@ extern "C" [[ noreturn ]] void vm_exit_handler(CONTEXT* context)
restore_context(context); restore_context(context);
} }
void ShvVmxSetupVmcsForVp(vmx::state* VpData) void setup_vmcs_for_cpu(vmx::state& vm_state)
{ {
auto* launch_context = &VpData->launch_context; auto* launch_context = &vm_state.launch_context;
auto* state = &launch_context->special_registers; auto* state = &launch_context->special_registers;
auto* context = &launch_context->context_frame; auto* context = &launch_context->context_frame;
@ -981,7 +978,7 @@ void ShvVmxSetupVmcsForVp(vmx::state* VpData)
// corresponds exactly to the location where RtlCaptureContext will return // corresponds exactly to the location where RtlCaptureContext will return
// to inside of ShvVpInitialize. // to inside of ShvVpInitialize.
// //
const auto stack_pointer = reinterpret_cast<uintptr_t>(VpData->stack_buffer) + KERNEL_STACK_SIZE - sizeof(CONTEXT); const auto stack_pointer = reinterpret_cast<uintptr_t>(vm_state.stack_buffer) + KERNEL_STACK_SIZE - sizeof(CONTEXT);
__vmx_vmwrite(VMCS_GUEST_RSP, stack_pointer); __vmx_vmwrite(VMCS_GUEST_RSP, stack_pointer);
__vmx_vmwrite(VMCS_GUEST_RIP, reinterpret_cast<uintptr_t>(vm_launch)); __vmx_vmwrite(VMCS_GUEST_RIP, reinterpret_cast<uintptr_t>(vm_launch));
@ -1013,15 +1010,15 @@ void initialize_msrs(vmx::launch_context& launch_context)
[[ noreturn ]] void launch_hypervisor(vmx::state& vm_state) [[ noreturn ]] void launch_hypervisor(vmx::state& vm_state)
{ {
initialize_msrs(vm_state.launch_context); initialize_msrs(vm_state.launch_context);
ShvVmxMtrrInitialize(&vm_state); initialize_mtrr(vm_state.launch_context);
ShvVmxEptInitialize(&vm_state); initialize_ept(vm_state);
if (!ShvVmxEnterRootModeOnVp(&vm_state)) if (!enter_root_mode_on_cpu(vm_state))
{ {
throw std::runtime_error("Not available"); throw std::runtime_error("Not available");
} }
ShvVmxSetupVmcsForVp(&vm_state); setup_vmcs_for_cpu(vm_state);
auto error_code = launch_vmx(); auto error_code = launch_vmx();
throw std::runtime_error(string::va("Failed to launch vmx: %X", error_code)); throw std::runtime_error(string::va("Failed to launch vmx: %X", error_code));