hypervisor/src/driver/hypervisor.cpp
2022-04-02 17:45:54 +02:00

1344 lines
36 KiB
C++

#include "std_include.hpp"
#include "hypervisor.hpp"
#include "exception.hpp"
#include "logging.hpp"
#include "finally.hpp"
#include "memory.hpp"
#include "thread.hpp"
#include "assembly.hpp"
#include <ia32.hpp>
#define _1GB (1 * 1024 * 1024 * 1024)
#define _2MB (2 * 1024 * 1024)
namespace
{
hypervisor* instance{nullptr};
bool is_vmx_supported()
{
cpuid_eax_01 data{};
__cpuid(reinterpret_cast<int*>(&data), CPUID_VERSION_INFORMATION);
return data.cpuid_feature_information_ecx.virtual_machine_extensions;
}
bool is_vmx_available()
{
ia32_feature_control_register feature_control{};
feature_control.flags = __readmsr(IA32_FEATURE_CONTROL);
return feature_control.lock_bit && feature_control.enable_vmx_outside_smx;
}
bool is_virtualization_supported()
{
return is_vmx_supported() && is_vmx_available();
}
#define HYPERV_HYPERVISOR_PRESENT_BIT 0x80000000
#define HYPERV_CPUID_INTERFACE 0x40000001
bool is_hypervisor_present()
{
cpuid_eax_01 data{};
__cpuid(reinterpret_cast<int*>(&data), CPUID_VERSION_INFORMATION);
if ((data.cpuid_feature_information_ecx.flags & HYPERV_HYPERVISOR_PRESENT_BIT) == 0)
{
return false;
}
int32_t cpuid_data[4] = {0};
__cpuid(cpuid_data, HYPERV_CPUID_INTERFACE);
return cpuid_data[0] == 'momo';
}
}
hypervisor::hypervisor()
{
if (instance != nullptr)
{
throw std::runtime_error("Hypervisor already instantiated");
}
auto destructor = utils::finally([this]()
{
this->free_vm_states();
instance = nullptr;
});
instance = this;
if (!is_virtualization_supported())
{
throw std::runtime_error("VMX not supported on this machine");
}
debug_log("VMX supported!\n");
this->allocate_vm_states();
this->enable();
destructor.cancel();
}
hypervisor::~hypervisor()
{
this->disable();
this->free_vm_states();
instance = nullptr;
}
void hypervisor::disable()
{
thread::dispatch_on_all_cores([this]()
{
this->disable_core();
});
}
void hypervisor::enable()
{
const auto cr3 = __readcr3();
volatile long failures = 0;
thread::dispatch_on_all_cores([&]()
{
if(!this->try_enable_core(cr3))
{
InterlockedIncrement(&failures);
}
});
if (failures)
{
this->disable();
throw std::runtime_error("Hypervisor initialization failed");
}
}
bool hypervisor::try_enable_core(const uint64_t system_directory_table_base)
{
try
{
this->enable_core(system_directory_table_base);
return true;
}
catch (std::exception& e)
{
debug_log("Failed to enable hypervisor on core %d: %s\n", thread::get_processor_index(), e.what());
return false;
}catch (...)
{
debug_log("Failed to enable hypervisor on core %d.\n", thread::get_processor_index());
return false;
}
}
void ShvCaptureSpecialRegisters(vmx::special_registers* special_registers)
{
special_registers->cr0 = __readcr0();
special_registers->cr3 = __readcr3();
special_registers->cr4 = __readcr4();
special_registers->debug_control = __readmsr(IA32_DEBUGCTL);
special_registers->msr_gs_base = __readmsr(IA32_GS_BASE);
special_registers->kernel_dr7 = __readdr(7);
_sgdt(&special_registers->gdtr.limit);
__sidt(&special_registers->idtr.limit);
_str(&special_registers->tr);
_sldt(&special_registers->ldtr);
}
uintptr_t
FORCEINLINE
ShvVmxRead(
_In_ UINT32 VmcsFieldId
)
{
size_t FieldData;
//
// Because VMXREAD returns an error code, and not the data, it is painful
// to use in most circumstances. This simple function simplifies it use.
//
__vmx_vmread(VmcsFieldId, &FieldData);
return FieldData;
}
INT32
ShvVmxLaunch(
VOID)
{
INT32 failureCode;
//
// Launch the VMCS
//
__vmx_vmlaunch();
//
// If we got here, either VMCS setup failed in some way, or the launch
// did not proceed as planned.
//
failureCode = (INT32)ShvVmxRead(VMCS_VM_INSTRUCTION_ERROR);
__vmx_off();
//
// Return the error back to the caller
//
return failureCode;
}
#define MTRR_PAGE_SIZE 4096
#define MTRR_PAGE_MASK (~(MTRR_PAGE_SIZE-1))
VOID ShvVmxMtrrInitialize(vmx::vm_state* VpData)
{
UINT32 i;
ia32_mtrr_capabilities_register mtrrCapabilities;
ia32_mtrr_physbase_register mtrrBase;
ia32_mtrr_physmask_register mtrrMask;
unsigned long bit;
//
// Read the capabilities mask
//
mtrrCapabilities.flags = __readmsr(IA32_MTRR_CAPABILITIES);
//
// Iterate over each variable MTRR
//
for (i = 0; i < mtrrCapabilities.variable_range_count; i++)
{
//
// Capture the value
//
mtrrBase.flags = __readmsr(IA32_MTRR_PHYSBASE0 + i * 2);
mtrrMask.flags = __readmsr(IA32_MTRR_PHYSMASK0 + i * 2);
//
// Check if the MTRR is enabled
//
VpData->mtrr_data[i].type = (UINT32)mtrrBase.type;
VpData->mtrr_data[i].enabled = (UINT32)mtrrMask.valid;
if (VpData->mtrr_data[i].enabled != FALSE)
{
//
// Set the base
//
VpData->mtrr_data[i].physical_address_min = mtrrBase.page_frame_number *
MTRR_PAGE_SIZE;
//
// Compute the length
//
_BitScanForward64(&bit, mtrrMask.page_frame_number * MTRR_PAGE_SIZE);
VpData->mtrr_data[i].physical_address_max = VpData->mtrr_data[i].
physical_address_min +
(1ULL << bit) - 1;
}
}
}
UINT32
ShvVmxMtrrAdjustEffectiveMemoryType(
vmx::vm_state* VpData,
_In_ UINT64 LargePageAddress,
_In_ UINT32 CandidateMemoryType
)
{
UINT32 i;
//
// Loop each MTRR range
//
for (i = 0; i < sizeof(VpData->mtrr_data) / sizeof(VpData->mtrr_data[0]); i++)
{
//
// Check if it's active
//
if (VpData->mtrr_data[i].enabled != FALSE)
{
//
// Check if this large page falls within the boundary. If a single
// physical page (4KB) touches it, we need to override the entire 2MB.
//
if (((LargePageAddress + (_2MB - 1)) >= VpData->mtrr_data[i].physical_address_min) &&
(LargePageAddress <= VpData->mtrr_data[i].physical_address_max))
{
//
// Override candidate type with MTRR type
//
CandidateMemoryType = VpData->mtrr_data[i].type;
}
}
}
//
// Return the correct type needed
//
return CandidateMemoryType;
}
void ShvVmxEptInitialize(vmx::vm_state* VpData)
{
//
// Fill out the EPML4E which covers the first 512GB of RAM
//
VpData->epml4[0].read = 1;
VpData->epml4[0].write = 1;
VpData->epml4[0].execute = 1;
VpData->epml4[0].page_frame_number = memory::get_physical_address(&VpData->epdpt) /
PAGE_SIZE;
//
// Fill out a RWX PDPTE
//
epdpte temp_epdpte;
temp_epdpte.flags = 0;
temp_epdpte.read_access = 1;
temp_epdpte.write_access = 1;
temp_epdpte.execute_access = 1;
//
// Construct EPT identity map for every 1GB of RAM
//
__stosq((UINT64*)VpData->epdpt, temp_epdpte.flags, EPT_PDPTE_ENTRY_COUNT);
for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++)
{
//
// Set the page frame number of the PDE table
//
VpData->epdpt[i].page_frame_number = memory::get_physical_address(&VpData->epde[i][0]) / PAGE_SIZE;
}
//
// Fill out a RWX Large PDE
//
epde_2mb temp_epde;
temp_epde.flags = 0;
temp_epde.read_access = 1;
temp_epde.write_access = 1;
temp_epde.execute_access = 1;
temp_epde.large_page = 1;
//
// Loop every 1GB of RAM (described by the PDPTE)
//
__stosq((UINT64*)VpData->epde, temp_epde.flags, EPT_PDPTE_ENTRY_COUNT * EPT_PDE_ENTRY_COUNT);
for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++)
{
//
// Construct EPT identity map for every 2MB of RAM
//
for (auto j = 0; j < EPT_PDE_ENTRY_COUNT; j++)
{
VpData->epde[i][j].page_frame_number = (i * 512) + j;
VpData->epde[i][j].memory_type = ShvVmxMtrrAdjustEffectiveMemoryType(VpData,
VpData->epde[i][j].page_frame_number * _2MB,
MEMORY_TYPE_WRITE_BACK);
}
}
}
UINT8
ShvVmxEnterRootModeOnVp(vmx::vm_state* VpData)
{
auto* Registers = &VpData->special_registers;
//
// Ensure the the VMCS can fit into a single page
//
ia32_vmx_basic_register basic_register{};
basic_register.flags = VpData->msr_data[0].QuadPart;
if (basic_register.vmcs_size_in_bytes > PAGE_SIZE)
{
return FALSE;
}
//
// Ensure that the VMCS is supported in writeback memory
//
if (basic_register.memory_type != MEMORY_TYPE_WRITE_BACK)
{
return FALSE;
}
//
// Ensure that true MSRs can be used for capabilities
//
if (basic_register.must_be_zero)
{
return FALSE;
}
//
// Ensure that EPT is available with the needed features SimpleVisor uses
//
ia32_vmx_ept_vpid_cap_register ept_vpid_cap_register{};
ept_vpid_cap_register.flags = VpData->msr_data[12].QuadPart;
if (ept_vpid_cap_register.page_walk_length_4 &&
ept_vpid_cap_register.memory_type_write_back &&
ept_vpid_cap_register.pde_2mb_pages)
{
//
// Enable EPT if these features are supported
//
VpData->ept_controls.flags = 0;
VpData->ept_controls.enable_ept = 1;
VpData->ept_controls.enable_vpid = 1;
}
//
// Capture the revision ID for the VMXON and VMCS region
//
VpData->vmx_on.revision_id = VpData->msr_data[0].LowPart;
VpData->vmcs.revision_id = VpData->msr_data[0].LowPart;
//
// Store the physical addresses of all per-LP structures allocated
//
VpData->vmx_on_physical_address = memory::get_physical_address(&VpData->vmx_on);
VpData->vmcs_physical_address = memory::get_physical_address(&VpData->vmcs);
VpData->msr_bitmap_physical_address = memory::get_physical_address(VpData->msr_bitmap);
VpData->ept_pml4_physical_address = memory::get_physical_address(&VpData->epml4);
//
// Update CR0 with the must-be-zero and must-be-one requirements
//
Registers->cr0 &= VpData->msr_data[7].LowPart;
Registers->cr0 |= VpData->msr_data[6].LowPart;
//
// Do the same for CR4
//
Registers->cr4 &= VpData->msr_data[9].LowPart;
Registers->cr4 |= VpData->msr_data[8].LowPart;
//
// Update host CR0 and CR4 based on the requirements above
//
__writecr0(Registers->cr0);
__writecr4(Registers->cr4);
//
// Enable VMX Root Mode
//
if (__vmx_on(&VpData->vmx_on_physical_address))
{
return FALSE;
}
//
// Clear the state of the VMCS, setting it to Inactive
//
if (__vmx_vmclear(&VpData->vmcs_physical_address))
{
__vmx_off();
return FALSE;
}
//
// Load the VMCS, setting its state to Active
//
if (__vmx_vmptrld(&VpData->vmcs_physical_address))
{
__vmx_off();
return FALSE;
}
//
// VMX Root Mode is enabled, with an active VMCS.
//
return TRUE;
}
typedef struct _VMX_GDTENTRY64
{
UINT64 Base;
UINT32 Limit;
union
{
struct
{
UINT8 Flags1;
UINT8 Flags2;
UINT8 Flags3;
UINT8 Flags4;
} Bytes;
struct
{
UINT16 SegmentType : 4;
UINT16 DescriptorType : 1;
UINT16 Dpl : 2;
UINT16 Present : 1;
UINT16 Reserved : 4;
UINT16 System : 1;
UINT16 LongMode : 1;
UINT16 DefaultBig : 1;
UINT16 Granularity : 1;
UINT16 Unusable : 1;
UINT16 Reserved2 : 15;
} Bits;
UINT32 AccessRights;
};
UINT16 Selector;
} VMX_GDTENTRY64, *PVMX_GDTENTRY64;
typedef union _KGDTENTRY64
{
struct
{
UINT16 LimitLow;
UINT16 BaseLow;
union
{
struct
{
UINT8 BaseMiddle;
UINT8 Flags1;
UINT8 Flags2;
UINT8 BaseHigh;
} Bytes;
struct
{
UINT32 BaseMiddle : 8;
UINT32 Type : 5;
UINT32 Dpl : 2;
UINT32 Present : 1;
UINT32 LimitHigh : 4;
UINT32 System : 1;
UINT32 LongMode : 1;
UINT32 DefaultBig : 1;
UINT32 Granularity : 1;
UINT32 BaseHigh : 8;
} Bits;
};
UINT32 BaseUpper;
UINT32 MustBeZero;
};
struct
{
INT64 DataLow;
INT64 DataHigh;
};
} KGDTENTRY64, *PKGDTENTRY64;
VOID
ShvUtilConvertGdtEntry(
_In_ VOID* GdtBase,
_In_ UINT16 Selector,
_Out_ PVMX_GDTENTRY64 VmxGdtEntry
)
{
PKGDTENTRY64 gdtEntry;
//
// Reject LDT or NULL entries
//
if ((Selector == 0) ||
(Selector & SEGMENT_SELECTOR_TABLE_FLAG) != 0)
{
VmxGdtEntry->Limit = VmxGdtEntry->AccessRights = 0;
VmxGdtEntry->Base = 0;
VmxGdtEntry->Selector = 0;
VmxGdtEntry->Bits.Unusable = TRUE;
return;
}
//
// Read the GDT entry at the given selector, masking out the RPL bits.
//
gdtEntry = (PKGDTENTRY64)((uintptr_t)GdtBase + (Selector & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK));
//
// Write the selector directly
//
VmxGdtEntry->Selector = Selector;
//
// Use the LSL intrinsic to read the segment limit
//
VmxGdtEntry->Limit = __segmentlimit(Selector);
//
// Build the full 64-bit effective address, keeping in mind that only when
// the System bit is unset, should this be done.
//
// NOTE: The Windows definition of KGDTENTRY64 is WRONG. The "System" field
// is incorrectly defined at the position of where the AVL bit should be.
// The actual location of the SYSTEM bit is encoded as the highest bit in
// the "Type" field.
//
VmxGdtEntry->Base = ((gdtEntry->Bytes.BaseHigh << 24) |
(gdtEntry->Bytes.BaseMiddle << 16) |
(gdtEntry->BaseLow)) & 0xFFFFFFFF;
VmxGdtEntry->Base |= ((gdtEntry->Bits.Type & 0x10) == 0) ? ((uintptr_t)gdtEntry->BaseUpper << 32) : 0;
//
// Load the access rights
//
VmxGdtEntry->AccessRights = 0;
VmxGdtEntry->Bytes.Flags1 = gdtEntry->Bytes.Flags1;
VmxGdtEntry->Bytes.Flags2 = gdtEntry->Bytes.Flags2;
//
// Finally, handle the VMX-specific bits
//
VmxGdtEntry->Bits.Reserved = 0;
VmxGdtEntry->Bits.Unusable = !gdtEntry->Bits.Present;
}
UINT32
ShvUtilAdjustMsr(
_In_ LARGE_INTEGER ControlValue,
_In_ UINT32 DesiredValue
)
{
//
// VMX feature/capability MSRs encode the "must be 0" bits in the high word
// of their value, and the "must be 1" bits in the low word of their value.
// Adjust any requested capability/feature based on these requirements.
//
DesiredValue &= ControlValue.HighPart;
DesiredValue |= ControlValue.LowPart;
return DesiredValue;
}
extern "C" VOID
ShvOsCaptureContext(
_In_ PCONTEXT ContextRecord
)
{
//
// Windows provides a nice OS function to do this
//
RtlCaptureContext(ContextRecord);
}
extern "C" DECLSPEC_NORETURN
VOID
__cdecl
ShvOsRestoreContext2(
_In_ PCONTEXT ContextRecord,
_In_opt_ struct _EXCEPTION_RECORD* ExceptionRecord
);
DECLSPEC_NORETURN
VOID
ShvVpRestoreAfterLaunch(
VOID)
{
debug_log("[%d] restore\n", thread::get_processor_index());
//
// Get the per-processor data. This routine temporarily executes on the
// same stack as the hypervisor (using no real stack space except the home
// registers), so we can retrieve the VP the same way the hypervisor does.
//
auto* vpData = (vmx::vm_state*)((uintptr_t)_AddressOfReturnAddress() +
sizeof(CONTEXT) -
KERNEL_STACK_SIZE);
//
// Record that VMX is now enabled by returning back to ShvVpInitialize with
// the Alignment Check (AC) bit set.
//
vpData->context_frame.EFlags |= EFLAGS_ALIGNMENT_CHECK_FLAG_FLAG;
//
// And finally, restore the context, so that all register and stack
// state is finally restored.
//
ShvOsRestoreContext2(&vpData->context_frame, nullptr);
}
VOID
ShvVmxHandleInvd(
VOID)
{
//
// This is the handler for the INVD instruction. Technically it may be more
// correct to use __invd instead of __wbinvd, but that intrinsic doesn't
// actually exist. Additionally, the Windows kernel (or HAL) don't contain
// any example of INVD actually ever being used. Finally, Hyper-V itself
// handles INVD by issuing WBINVD as well, so we'll just do that here too.
//
__wbinvd();
}
#define DPL_USER 3
#define DPL_SYSTEM 0
typedef struct _SHV_VP_STATE
{
PCONTEXT VpRegs;
uintptr_t GuestRip;
uintptr_t GuestRsp;
uintptr_t GuestEFlags;
UINT16 ExitReason;
UINT8 ExitVm;
} SHV_VP_STATE, *PSHV_VP_STATE;
VOID
ShvVmxHandleCpuid(
_In_ PSHV_VP_STATE VpState
)
{
INT32 cpu_info[4];
//
// Check for the magic CPUID sequence, and check that it is coming from
// Ring 0. Technically we could also check the RIP and see if this falls
// in the expected function, but we may want to allow a separate "unload"
// driver or code at some point.
//
if ((VpState->VpRegs->Rax == 0x41414141) &&
(VpState->VpRegs->Rcx == 0x42424242) &&
((ShvVmxRead(VMCS_GUEST_CS_SELECTOR) & SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK) == DPL_SYSTEM))
{
VpState->ExitVm = TRUE;
return;
}
//
// Otherwise, issue the CPUID to the logical processor based on the indexes
// on the VP's GPRs.
//
__cpuidex(cpu_info, (INT32)VpState->VpRegs->Rax, (INT32)VpState->VpRegs->Rcx);
//
// Check if this was CPUID 1h, which is the features request.
//
if (VpState->VpRegs->Rax == 1)
{
//
// Set the Hypervisor Present-bit in RCX, which Intel and AMD have both
// reserved for this indication.
//
cpu_info[2] |= HYPERV_HYPERVISOR_PRESENT_BIT;
}
else if (VpState->VpRegs->Rax == HYPERV_CPUID_INTERFACE)
{
//
// Return our interface identifier
//
cpu_info[0] = 'momo';
}
//
// Copy the values from the logical processor registers into the VP GPRs.
//
VpState->VpRegs->Rax = cpu_info[0];
VpState->VpRegs->Rbx = cpu_info[1];
VpState->VpRegs->Rcx = cpu_info[2];
VpState->VpRegs->Rdx = cpu_info[3];
}
VOID
ShvVmxHandleXsetbv(
_In_ PSHV_VP_STATE VpState
)
{
//
// Simply issue the XSETBV instruction on the native logical processor.
//
_xsetbv((UINT32)VpState->VpRegs->Rcx,
VpState->VpRegs->Rdx << 32 |
VpState->VpRegs->Rax);
}
VOID
ShvVmxHandleVmx(
_In_ PSHV_VP_STATE VpState
)
{
//
// Set the CF flag, which is how VMX instructions indicate failure
//
VpState->GuestEFlags |= 0x1; // VM_FAIL_INVALID
//
// RFLAGs is actually restored from the VMCS, so update it here
//
__vmx_vmwrite(VMCS_GUEST_RFLAGS, VpState->GuestEFlags);
}
VOID
ShvVmxHandleExit(
_In_ PSHV_VP_STATE VpState
)
{
//
// This is the generic VM-Exit handler. Decode the reason for the exit and
// call the appropriate handler. As per Intel specifications, given that we
// have requested no optional exits whatsoever, we should only see CPUID,
// INVD, XSETBV and other VMX instructions. GETSEC cannot happen as we do
// not run in SMX context.
//
switch (VpState->ExitReason)
{
case VMX_EXIT_REASON_EXECUTE_CPUID:
ShvVmxHandleCpuid(VpState);
break;
case VMX_EXIT_REASON_EXECUTE_INVD:
ShvVmxHandleInvd();
break;
case VMX_EXIT_REASON_EXECUTE_XSETBV:
ShvVmxHandleXsetbv(VpState);
break;
case VMX_EXIT_REASON_EXECUTE_VMCALL:
case VMX_EXIT_REASON_EXECUTE_VMCLEAR:
case VMX_EXIT_REASON_EXECUTE_VMLAUNCH:
case VMX_EXIT_REASON_EXECUTE_VMPTRLD:
case VMX_EXIT_REASON_EXECUTE_VMPTRST:
case VMX_EXIT_REASON_EXECUTE_VMREAD:
case VMX_EXIT_REASON_EXECUTE_VMRESUME:
case VMX_EXIT_REASON_EXECUTE_VMWRITE:
case VMX_EXIT_REASON_EXECUTE_VMXOFF:
case VMX_EXIT_REASON_EXECUTE_VMXON:
ShvVmxHandleVmx(VpState);
break;
default:
break;
}
//
// Move the instruction pointer to the next instruction after the one that
// caused the exit. Since we are not doing any special handling or changing
// of execution, this can be done for any exit reason.
//
VpState->GuestRip += ShvVmxRead(VMCS_VMEXIT_INSTRUCTION_LENGTH);
__vmx_vmwrite(VMCS_GUEST_RIP, VpState->GuestRip);
}
VOID
ShvOsUnprepareProcessor(
_In_ vmx::vm_state* VpData
)
{
//
// When running in VMX root mode, the processor will set limits of the
// GDT and IDT to 0xFFFF (notice that there are no Host VMCS fields to
// set these values). This causes problems with PatchGuard, which will
// believe that the GDTR and IDTR have been modified by malware, and
// eventually crash the system. Since we know what the original state
// of the GDTR and IDTR was, simply restore it now.
//
__lgdt(&VpData->special_registers.gdtr.limit);
__lidt(&VpData->special_registers.idtr.limit);
}
DECLSPEC_NORETURN
VOID
ShvVmxResume()
{
//
// Issue a VMXRESUME. The reason that we've defined an entire function for
// this sole instruction is both so that we can use it as the target of the
// VMCS when re-entering the VM After a VM-Exit, as well as so that we can
// decorate it with the DECLSPEC_NORETURN marker, which is not set on the
// intrinsic (as it can fail in case of an error).
//
__vmx_vmresume();
}
extern "C" DECLSPEC_NORETURN
VOID
ShvVmxEntryHandler()
{
PCONTEXT Context = (PCONTEXT)_AddressOfReturnAddress();
SHV_VP_STATE guestContext;
//
// Because we had to use RCX when calling ShvOsCaptureContext, its value
// was actually pushed on the stack right before the call. Go dig into the
// stack to find it, and overwrite the bogus value that's there now.
//
//Context->Rcx = *(UINT64*)((uintptr_t)Context - sizeof(Context->Rcx));
//
// Get the per-VP data for this processor.
//
auto* vpData = (vmx::vm_state*)((uintptr_t)(Context + 1) - KERNEL_STACK_SIZE);
//
// Build a little stack context to make it easier to keep track of certain
// guest state, such as the RIP/RSP/RFLAGS, and the exit reason. The rest
// of the general purpose registers come from the context structure that we
// captured on our own with RtlCaptureContext in the assembly entrypoint.
//
guestContext.GuestEFlags = ShvVmxRead(VMCS_GUEST_RFLAGS);
guestContext.GuestRip = ShvVmxRead(VMCS_GUEST_RIP);
guestContext.GuestRsp = ShvVmxRead(VMCS_GUEST_RSP);
guestContext.ExitReason = ShvVmxRead(VMCS_EXIT_REASON) & 0xFFFF;
guestContext.VpRegs = Context;
guestContext.ExitVm = FALSE;
//
// Call the generic handler
//
ShvVmxHandleExit(&guestContext);
//
// Did we hit the magic exit sequence, or should we resume back to the VM
// context?
//
if (guestContext.ExitVm != FALSE)
{
//
// Return the VP Data structure in RAX:RBX which is going to be part of
// the CPUID response that the caller (ShvVpUninitialize) expects back.
// Return confirmation in RCX that we are loaded
//
Context->Rax = (uintptr_t)vpData >> 32;
Context->Rbx = (uintptr_t)vpData & 0xFFFFFFFF;
Context->Rcx = 0x43434343;
//
// Perform any OS-specific CPU uninitialization work
//
ShvOsUnprepareProcessor(vpData);
//
// Our callback routine may have interrupted an arbitrary user process,
// and therefore not a thread running with a systemwide page directory.
// Therefore if we return back to the original caller after turning off
// VMX, it will keep our current "host" CR3 value which we set on entry
// to the PML4 of the SYSTEM process. We want to return back with the
// correct value of the "guest" CR3, so that the currently executing
// process continues to run with its expected address space mappings.
//
__writecr3(ShvVmxRead(VMCS_GUEST_CR3));
//
// Finally, restore the stack, instruction pointer and EFLAGS to the
// original values present when the instruction causing our VM-Exit
// execute (such as ShvVpUninitialize). This will effectively act as
// a longjmp back to that location.
//
Context->Rsp = guestContext.GuestRsp;
Context->Rip = (UINT64)guestContext.GuestRip;
Context->EFlags = (UINT32)guestContext.GuestEFlags;
//
// Turn off VMX root mode on this logical processor. We're done here.
//
__vmx_off();
}
else
{
//
// Because we won't be returning back into assembly code, nothing will
// ever know about the "pop rcx" that must technically be done (or more
// accurately "add rsp, 4" as rcx will already be correct thanks to the
// fixup earlier. In order to keep the stack sane, do that adjustment
// here.
//
//Context->Rsp += sizeof(Context->Rcx);
//
// Return into a VMXRESUME intrinsic, which we broke out as its own
// function, in order to allow this to work. No assembly code will be
// needed as RtlRestoreContext will fix all the GPRs, and what we just
// did to RSP will take care of the rest.
//
Context->Rip = (UINT64)ShvVmxResume;
}
//
// Restore the context to either ShvVmxResume, in which case the CPU's VMX
// facility will do the "true" return back to the VM (but without restoring
// GPRs, which is why we must do it here), or to the original guest's RIP,
// which we use in case an exit was requested. In this case VMX must now be
// off, and this will look like a longjmp to the original stack and RIP.
//
ShvOsRestoreContext2(Context, nullptr);
}
extern "C" VOID
ShvVmxEntry(
VOID);
void ShvVmxSetupVmcsForVp(vmx::vm_state* VpData)
{
auto* state = &VpData->special_registers;
PCONTEXT context = &VpData->context_frame;
VMX_GDTENTRY64 vmxGdtEntry; // vmx_segment_access_rights
ept_pointer vmxEptp;
//
// Begin by setting the link pointer to the required value for 4KB VMCS.
//
__vmx_vmwrite(VMCS_GUEST_VMCS_LINK_POINTER, ~0ULL);
//
// Enable EPT features if supported
//
if (VpData->ept_controls.flags != 0)
{
//
// Configure the EPTP
//
vmxEptp.flags = 0;
vmxEptp.page_walk_length = 3;
vmxEptp.memory_type = MEMORY_TYPE_WRITE_BACK;
vmxEptp.page_frame_number = VpData->ept_pml4_physical_address / PAGE_SIZE;
//
// Load EPT Root Pointer
//
__vmx_vmwrite(VMCS_CTRL_EPT_POINTER, vmxEptp.flags);
//
// Set VPID to one
//
__vmx_vmwrite(VMCS_CTRL_VIRTUAL_PROCESSOR_IDENTIFIER, 1);
}
//
// Load the MSR bitmap. Unlike other bitmaps, not having an MSR bitmap will
// trap all MSRs, so we allocated an empty one.
//
__vmx_vmwrite(VMCS_CTRL_MSR_BITMAP_ADDRESS, VpData->msr_bitmap_physical_address);
//
// Enable support for RDTSCP and XSAVES/XRESTORES in the guest. Windows 10
// makes use of both of these instructions if the CPU supports it. By using
// ShvUtilAdjustMsr, these options will be ignored if this processor does
// not actually support the instructions to begin with.
//
// Also enable EPT support, for additional performance and ability to trap
// memory access efficiently.
//
auto ept_controls = VpData->ept_controls;
ept_controls.enable_rdtscp = 1;
ept_controls.enable_invpcid = 1;
ept_controls.enable_xsaves = 1;
__vmx_vmwrite(VMCS_CTRL_SECONDARY_PROCESSOR_BASED_VM_EXECUTION_CONTROLS,
ShvUtilAdjustMsr(VpData->msr_data[11], ept_controls.flags));
//
// Enable no pin-based options ourselves, but there may be some required by
// the processor. Use ShvUtilAdjustMsr to add those in.
//
__vmx_vmwrite(VMCS_CTRL_PIN_BASED_VM_EXECUTION_CONTROLS,
ShvUtilAdjustMsr(VpData->msr_data[13], 0));
//
// In order for our choice of supporting RDTSCP and XSAVE/RESTORES above to
// actually mean something, we have to request secondary controls. We also
// want to activate the MSR bitmap in order to keep them from being caught.
//
ia32_vmx_procbased_ctls_register procbased_ctls_register{};
procbased_ctls_register.activate_secondary_controls = 1;
procbased_ctls_register.use_msr_bitmaps = 1;
__vmx_vmwrite(VMCS_CTRL_PROCESSOR_BASED_VM_EXECUTION_CONTROLS,
ShvUtilAdjustMsr(VpData->msr_data[14],
procbased_ctls_register.flags));
//
// Make sure to enter us in x64 mode at all times.
//
ia32_vmx_exit_ctls_register exit_ctls_register{};
exit_ctls_register.host_address_space_size = 1;
__vmx_vmwrite(VMCS_CTRL_VMEXIT_CONTROLS,
ShvUtilAdjustMsr(VpData->msr_data[15],
exit_ctls_register.flags));
//
// As we exit back into the guest, make sure to exist in x64 mode as well.
//
ia32_vmx_entry_ctls_register entry_ctls_register{};
entry_ctls_register.ia32e_mode_guest = 1;
__vmx_vmwrite(VMCS_CTRL_VMENTRY_CONTROLS,
ShvUtilAdjustMsr(VpData->msr_data[16],
entry_ctls_register.flags));
//
// Load the CS Segment (Ring 0 Code)
//
ShvUtilConvertGdtEntry(state->gdtr.base, context->SegCs, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_CS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_CS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_CS_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_CS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_CS_SELECTOR, context->SegCs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the SS Segment (Ring 0 Data)
//
ShvUtilConvertGdtEntry(state->gdtr.base, context->SegSs, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_SS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_SS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_SS_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_SS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_SS_SELECTOR, context->SegSs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the DS Segment (Ring 3 Data)
//
ShvUtilConvertGdtEntry(state->gdtr.base, context->SegDs, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_DS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_DS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_DS_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_DS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_DS_SELECTOR, context->SegDs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the ES Segment (Ring 3 Data)
//
ShvUtilConvertGdtEntry(state->gdtr.base, context->SegEs, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_ES_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_ES_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_ES_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_ES_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_ES_SELECTOR, context->SegEs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the FS Segment (Ring 3 Compatibility-Mode TEB)
//
ShvUtilConvertGdtEntry(state->gdtr.base, context->SegFs, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_FS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_FS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_FS_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_FS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_FS_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_FS_SELECTOR, context->SegFs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the GS Segment (Ring 3 Data if in Compatibility-Mode, MSR-based in Long Mode)
//
ShvUtilConvertGdtEntry(state->gdtr.base, context->SegGs, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_GS_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_GS_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_GS_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_GS_BASE, state->msr_gs_base);
__vmx_vmwrite(VMCS_HOST_GS_BASE, state->msr_gs_base);
__vmx_vmwrite(VMCS_HOST_GS_SELECTOR, context->SegGs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the Task Register (Ring 0 TSS)
//
ShvUtilConvertGdtEntry(state->gdtr.base, state->tr, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_TR_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_TR_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_TR_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_TR_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_TR_BASE, vmxGdtEntry.Base);
__vmx_vmwrite(VMCS_HOST_TR_SELECTOR, state->tr & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the Local Descriptor Table (Ring 0 LDT on Redstone)
//
ShvUtilConvertGdtEntry(state->gdtr.base, state->ldtr, &vmxGdtEntry);
__vmx_vmwrite(VMCS_GUEST_LDTR_SELECTOR, vmxGdtEntry.Selector);
__vmx_vmwrite(VMCS_GUEST_LDTR_LIMIT, vmxGdtEntry.Limit);
__vmx_vmwrite(VMCS_GUEST_LDTR_ACCESS_RIGHTS, vmxGdtEntry.AccessRights);
__vmx_vmwrite(VMCS_GUEST_LDTR_BASE, vmxGdtEntry.Base);
//
// Now load the GDT itself
//
__vmx_vmwrite(VMCS_GUEST_GDTR_BASE, (uintptr_t)state->gdtr.base);
__vmx_vmwrite(VMCS_GUEST_GDTR_LIMIT, state->gdtr.limit);
__vmx_vmwrite(VMCS_HOST_GDTR_BASE, (uintptr_t)state->gdtr.base);
//
// And then the IDT
//
__vmx_vmwrite(VMCS_GUEST_IDTR_BASE, (uintptr_t)state->idtr.base);
__vmx_vmwrite(VMCS_GUEST_IDTR_LIMIT, state->idtr.limit);
__vmx_vmwrite(VMCS_HOST_IDTR_BASE, (uintptr_t)state->idtr.base);
//
// Load CR0
//
__vmx_vmwrite(VMCS_CTRL_CR0_READ_SHADOW, state->cr0);
__vmx_vmwrite(VMCS_HOST_CR0, state->cr0);
__vmx_vmwrite(VMCS_GUEST_CR0, state->cr0);
//
// Load CR3 -- do not use the current process' address space for the host,
// because we may be executing in an arbitrary user-mode process right now
// as part of the DPC interrupt we execute in.
//
__vmx_vmwrite(VMCS_HOST_CR3, VpData->system_directory_table_base);
__vmx_vmwrite(VMCS_GUEST_CR3, state->cr3);
//
// Load CR4
//
__vmx_vmwrite(VMCS_HOST_CR4, state->cr4);
__vmx_vmwrite(VMCS_GUEST_CR4, state->cr4);
__vmx_vmwrite(VMCS_CTRL_CR4_READ_SHADOW, state->cr4);
//
// Load debug MSR and register (DR7)
//
__vmx_vmwrite(VMCS_GUEST_DEBUGCTL, state->debug_control);
__vmx_vmwrite(VMCS_GUEST_DR7, state->kernel_dr7);
//
// Finally, load the guest stack, instruction pointer, and rflags, which
// corresponds exactly to the location where RtlCaptureContext will return
// to inside of ShvVpInitialize.
//
__vmx_vmwrite(VMCS_GUEST_RSP, (uintptr_t)VpData->stack_buffer + KERNEL_STACK_SIZE - sizeof(CONTEXT));
__vmx_vmwrite(VMCS_GUEST_RIP, (uintptr_t)ShvVpRestoreAfterLaunch);
__vmx_vmwrite(VMCS_GUEST_RFLAGS, context->EFlags);
//
// Load the hypervisor entrypoint and stack. We give ourselves a standard
// size kernel stack (24KB) and bias for the context structure that the
// hypervisor entrypoint will push on the stack, avoiding the need for RSP
// modifying instructions in the entrypoint. Note that the CONTEXT pointer
// and thus the stack itself, must be 16-byte aligned for ABI compatibility
// with AMD64 -- specifically, XMM operations will fail otherwise, such as
// the ones that RtlCaptureContext will perform.
//
C_ASSERT((KERNEL_STACK_SIZE - sizeof(CONTEXT)) % 16 == 0);
__vmx_vmwrite(VMCS_HOST_RSP, (uintptr_t)VpData->stack_buffer + KERNEL_STACK_SIZE - sizeof(CONTEXT));
__vmx_vmwrite(VMCS_HOST_RIP, (uintptr_t)ShvVmxEntry);
}
INT32 ShvVmxLaunchOnVp(vmx::vm_state* VpData)
{
//
// Initialize all the VMX-related MSRs by reading their value
//
for (UINT32 i = 0; i < sizeof(VpData->msr_data) / sizeof(VpData->msr_data[0]); i++)
{
VpData->msr_data[i].QuadPart = __readmsr(IA32_VMX_BASIC + i);
}
debug_log("[%d] mtrr init\n", thread::get_processor_index());
//
// Initialize all the MTRR-related MSRs by reading their value and build
// range structures to describe their settings
//
ShvVmxMtrrInitialize(VpData);
debug_log("[%d] ept init\n", thread::get_processor_index());
//
// Initialize the EPT structures
//
ShvVmxEptInitialize(VpData);
debug_log("[%d] entering root mode\n", thread::get_processor_index());
//
// Attempt to enter VMX root mode on this processor.
//
if (ShvVmxEnterRootModeOnVp(VpData) == FALSE)
{
throw std::runtime_error("Not available");
}
debug_log("[%d] setting up vmcs\n", thread::get_processor_index());
//
// Initialize the VMCS, both guest and host state.
//
ShvVmxSetupVmcsForVp(VpData);
//
// Launch the VMCS, based on the guest data that was loaded into the
// various VMCS fields by ShvVmxSetupVmcsForVp. This will cause the
// processor to jump to ShvVpRestoreAfterLaunch on success, or return
// back to the caller on failure.
//
debug_log("[%d] vmx launch\n", thread::get_processor_index());
return ShvVmxLaunch();
}
void hypervisor::enable_core(const uint64_t system_directory_table_base)
{
debug_log("[%d] Enabling hypervisor on core %d\n", thread::get_processor_index(), thread::get_processor_index());
auto* vm_state = this->get_current_vm_state();
vm_state->system_directory_table_base = system_directory_table_base;
debug_log("[%d] Capturing registers\n", thread::get_processor_index());
ShvCaptureSpecialRegisters(&vm_state->special_registers);
//
// Then, capture the entire register state. We will need this, as once we
// launch the VM, it will begin execution at the defined guest instruction
// pointer, which we set to ShvVpRestoreAfterLaunch, with the registers set
// to whatever value they were deep inside the VMCS/VMX initialization code.
// By using RtlRestoreContext, that function sets the AC flag in EFLAGS and
// returns here with our registers restored.
//
debug_log("[%d] Capturing context\n", thread::get_processor_index());
RtlCaptureContext(&vm_state->context_frame);
if ((__readeflags() & EFLAGS_ALIGNMENT_CHECK_FLAG_FLAG) == 0)
{
//
// If the AC bit is not set in EFLAGS, it means that we have not yet
// launched the VM. Attempt to initialize VMX on this processor.
//
debug_log("[%d] Launching\n", thread::get_processor_index());
ShvVmxLaunchOnVp(vm_state);
}
if (!is_hypervisor_present())
{
throw std::runtime_error("Hypervisor is not present");
}
}
void hypervisor::disable_core()
{
int32_t cpu_info[4]{0};
__cpuidex(cpu_info, 0x41414141, 0x42424242);
}
void hypervisor::allocate_vm_states()
{
if (this->vm_states_)
{
throw std::runtime_error("VM states are still in use");
}
const auto core_count = thread::get_processor_count();
const auto allocation_size = sizeof(vmx::vm_state) * core_count;
this->vm_states_ = static_cast<vmx::vm_state*>(memory::allocate_aligned_memory(allocation_size));
if (!this->vm_states_)
{
throw std::runtime_error("Failed to allocate VM states");
}
RtlSecureZeroMemory(this->vm_states_, allocation_size);
}
void hypervisor::free_vm_states()
{
memory::free_aligned_memory(this->vm_states_);
this->vm_states_ = nullptr;
}
vmx::vm_state* hypervisor::get_current_vm_state() const
{
const auto current_core = thread::get_processor_index();
return &this->vm_states_[current_core];
}