hypervisor/src/driver/hypervisor.cpp
2022-04-24 21:23:54 +02:00

1112 lines
33 KiB
C++

#include "std_include.hpp"
#include "hypervisor.hpp"
#include "exception.hpp"
#include "logging.hpp"
#include "finally.hpp"
#include "memory.hpp"
#include "thread.hpp"
#include "assembly.hpp"
#include "string.hpp"
namespace
{
hypervisor* instance{nullptr};
bool is_vmx_supported()
{
cpuid_eax_01 data{};
__cpuid(reinterpret_cast<int*>(&data), CPUID_VERSION_INFORMATION);
return data.cpuid_feature_information_ecx.virtual_machine_extensions;
}
bool is_vmx_available()
{
ia32_feature_control_register feature_control{};
feature_control.flags = __readmsr(IA32_FEATURE_CONTROL);
return feature_control.lock_bit && feature_control.enable_vmx_outside_smx;
}
bool is_virtualization_supported()
{
return is_vmx_supported() && is_vmx_available();
}
bool is_hypervisor_present()
{
cpuid_eax_01 data{};
__cpuid(reinterpret_cast<int*>(&data), CPUID_VERSION_INFORMATION);
if ((data.cpuid_feature_information_ecx.flags & HYPERV_HYPERVISOR_PRESENT_BIT) == 0)
{
return false;
}
int32_t cpuid_data[4] = {0};
__cpuid(cpuid_data, HYPERV_CPUID_INTERFACE);
return cpuid_data[0] == 'momo';
}
void cpature_special_registers(vmx::special_registers& special_registers)
{
special_registers.cr0 = __readcr0();
special_registers.cr3 = __readcr3();
special_registers.cr4 = __readcr4();
special_registers.debug_control = __readmsr(IA32_DEBUGCTL);
special_registers.msr_gs_base = __readmsr(IA32_GS_BASE);
special_registers.kernel_dr7 = __readdr(7);
_sgdt(&special_registers.gdtr);
__sidt(&special_registers.idtr);
_str(&special_registers.tr);
_sldt(&special_registers.ldtr);
}
void capture_cpu_context(vmx::launch_context& launch_context)
{
cpature_special_registers(launch_context.special_registers);
RtlCaptureContext(&launch_context.context_frame);
}
void restore_descriptor_tables(vmx::launch_context& launch_context)
{
__lgdt(&launch_context.special_registers.gdtr);
__lidt(&launch_context.special_registers.idtr);
}
vmx::state* resolve_vm_state_from_context(CONTEXT& context)
{
auto* context_address = reinterpret_cast<uint8_t*>(&context);
auto* vm_state_address = context_address + sizeof(CONTEXT) - KERNEL_STACK_SIZE;
return reinterpret_cast<vmx::state*>(vm_state_address);
}
uintptr_t read_vmx(const uint32_t vmcs_field_id)
{
size_t data{};
__vmx_vmread(vmcs_field_id, &data);
return data;
}
[[ noreturn ]] void resume_vmx()
{
__vmx_vmresume();
}
int32_t launch_vmx()
{
__vmx_vmlaunch();
const auto error_code = static_cast<int32_t>(read_vmx(VMCS_VM_INSTRUCTION_ERROR));
__vmx_off();
return error_code;
}
extern "C" [[ noreturn ]] void vm_launch_handler(CONTEXT* context)
{
auto* vm_state = resolve_vm_state_from_context(*context);
vm_state->launch_context.context_frame.EFlags |= EFLAGS_ALIGNMENT_CHECK_FLAG_FLAG;
restore_context(&vm_state->launch_context.context_frame);
}
}
hypervisor::hypervisor()
{
if (instance != nullptr)
{
throw std::runtime_error("Hypervisor already instantiated");
}
auto destructor = utils::finally([this]()
{
this->free_vm_states();
instance = nullptr;
});
instance = this;
if (!is_virtualization_supported())
{
throw std::runtime_error("VMX not supported on this machine");
}
debug_log("VMX supported!\n");
this->allocate_vm_states();
this->enable();
destructor.cancel();
}
hypervisor::~hypervisor()
{
this->disable();
this->free_vm_states();
instance = nullptr;
}
void hypervisor::disable()
{
thread::dispatch_on_all_cores([this]()
{
this->disable_core();
});
debug_log("Hypervisor disabled on all cores\n");
}
bool hypervisor::is_enabled() const
{
return is_hypervisor_present();
}
void hypervisor::enable()
{
const auto cr3 = __readcr3();
volatile long failures = 0;
thread::dispatch_on_all_cores([&]()
{
if (!this->try_enable_core(cr3))
{
InterlockedIncrement(&failures);
}
});
if (failures)
{
this->disable();
throw std::runtime_error("Hypervisor initialization failed");
}
debug_log("Hypervisor enabled on %d cores\n", this->vm_state_count_);
}
bool hypervisor::try_enable_core(const uint64_t system_directory_table_base)
{
try
{
this->enable_core(system_directory_table_base);
return true;
}
catch (std::exception& e)
{
debug_log("Failed to enable hypervisor on core %d: %s\n", thread::get_processor_index(), e.what());
return false;
}
catch (...)
{
debug_log("Failed to enable hypervisor on core %d.\n", thread::get_processor_index());
return false;
}
}
#define MTRR_PAGE_SIZE 4096
#define MTRR_PAGE_MASK (~(MTRR_PAGE_SIZE-1))
void initialize_mtrr(vmx::launch_context& launch_context)
{
//
// Read the capabilities mask
//
ia32_mtrr_capabilities_register mtrr_capabilities{};
mtrr_capabilities.flags = __readmsr(IA32_MTRR_CAPABILITIES);
//
// Iterate over each variable MTRR
//
for (auto i = 0u; i < mtrr_capabilities.variable_range_count; i++)
{
//
// Capture the value
//
ia32_mtrr_physbase_register mtrr_base{};
ia32_mtrr_physmask_register mtrr_mask{};
mtrr_base.flags = __readmsr(IA32_MTRR_PHYSBASE0 + i * 2);
mtrr_mask.flags = __readmsr(IA32_MTRR_PHYSMASK0 + i * 2);
//
// Check if the MTRR is enabled
//
launch_context.mtrr_data[i].type = static_cast<uint32_t>(mtrr_base.type);
launch_context.mtrr_data[i].enabled = static_cast<uint32_t>(mtrr_mask.valid);
if (launch_context.mtrr_data[i].enabled != FALSE)
{
//
// Set the base
//
launch_context.mtrr_data[i].physical_address_min = mtrr_base.page_frame_number *
MTRR_PAGE_SIZE;
//
// Compute the length
//
unsigned long bit;
_BitScanForward64(&bit, mtrr_mask.page_frame_number * MTRR_PAGE_SIZE);
launch_context.mtrr_data[i].physical_address_max = launch_context.mtrr_data[i].
physical_address_min +
(1ULL << bit) - 1;
}
}
}
uint32_t mtrr_adjust_effective_memory_type( vmx::launch_context& launch_context, const uint64_t large_page_address, uint32_t candidate_memory_type)
{
//
// Loop each MTRR range
//
for (const auto& mtrr_entry : launch_context.mtrr_data) {
//
// Check if it's active
//
if (!mtrr_entry.enabled)
{
continue;
}
//
// Check if this large page falls within the boundary. If a single
// physical page (4KB) touches it, we need to override the entire 2MB.
//
if (((large_page_address + (_2MB - 1)) >= mtrr_entry.physical_address_min) &&
(large_page_address <= mtrr_entry.physical_address_max))
{
candidate_memory_type = mtrr_entry.type;
}
}
return candidate_memory_type;
}
void initialize_ept(vmx::state& vm_state)
{
//
// Fill out the EPML4E which covers the first 512GB of RAM
//
vm_state.epml4[0].read_access = 1;
vm_state.epml4[0].write_access = 1;
vm_state.epml4[0].execute_access = 1;
vm_state.epml4[0].page_frame_number = memory::get_physical_address(&vm_state.epdpt) /
PAGE_SIZE;
//
// Fill out a RWX PDPTE
//
epdpte temp_epdpte;
temp_epdpte.flags = 0;
temp_epdpte.read_access = 1;
temp_epdpte.write_access = 1;
temp_epdpte.execute_access = 1;
//
// Construct EPT identity map for every 1GB of RAM
//
__stosq(reinterpret_cast<uint64_t*>(vm_state.epdpt), temp_epdpte.flags, EPT_PDPTE_ENTRY_COUNT);
for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++)
{
//
// Set the page frame number of the PDE table
//
vm_state.epdpt[i].page_frame_number = memory::get_physical_address(&vm_state.epde[i][0]) / PAGE_SIZE;
}
//
// Fill out a RWX Large PDE
//
epde_2mb temp_epde{};
temp_epde.flags = 0;
temp_epde.read_access = 1;
temp_epde.write_access = 1;
temp_epde.execute_access = 1;
temp_epde.large_page = 1;
//
// Loop every 1GB of RAM (described by the PDPTE)
//
__stosq(reinterpret_cast<uint64_t*>(vm_state.epde), temp_epde.flags, EPT_PDPTE_ENTRY_COUNT * EPT_PDE_ENTRY_COUNT);
for (auto i = 0; i < EPT_PDPTE_ENTRY_COUNT; i++)
{
//
// Construct EPT identity map for every 2MB of RAM
//
for (auto j = 0; j < EPT_PDE_ENTRY_COUNT; j++)
{
vm_state.epde[i][j].page_frame_number = (i * 512) + j;
vm_state.epde[i][j].memory_type = mtrr_adjust_effective_memory_type(vm_state.launch_context,
vm_state.epde[i][j].page_frame_number * _2MB,
MEMORY_TYPE_WRITE_BACK);
}
}
}
bool enter_root_mode_on_cpu(vmx::state& vm_state)
{
auto* launch_context = &vm_state.launch_context;
auto* registers = &launch_context->special_registers;
//
// Ensure the the VMCS can fit into a single page
//
ia32_vmx_basic_register basic_register{};
memset(&basic_register, 0, sizeof(basic_register));
basic_register.flags = launch_context->msr_data[0].QuadPart;
if (basic_register.vmcs_size_in_bytes > static_cast<uint64_t>(PAGE_SIZE))
{
return false;
}
//
// Ensure that the VMCS is supported in writeback memory
//
if (basic_register.memory_type != static_cast<uint64_t>(MEMORY_TYPE_WRITE_BACK))
{
return false;
}
//
// Ensure that true MSRs can be used for capabilities
//
if (basic_register.must_be_zero)
{
return false;
}
//
// Ensure that EPT is available with the needed features SimpleVisor uses
//
ia32_vmx_ept_vpid_cap_register ept_vpid_cap_register{};
ept_vpid_cap_register.flags = launch_context->msr_data[12].QuadPart;
if (ept_vpid_cap_register.page_walk_length_4 &&
ept_vpid_cap_register.memory_type_write_back &&
ept_vpid_cap_register.pde_2mb_pages)
{
//
// Enable EPT if these features are supported
//
launch_context->ept_controls.flags = 0;
launch_context->ept_controls.enable_ept = 1;
launch_context->ept_controls.enable_vpid = 1;
}
//
// Capture the revision ID for the VMXON and VMCS region
//
vm_state.vmx_on.revision_id = launch_context->msr_data[0].LowPart;
vm_state.vmcs.revision_id = launch_context->msr_data[0].LowPart;
//
// Store the physical addresses of all per-LP structures allocated
//
launch_context->vmx_on_physical_address = memory::get_physical_address(&vm_state.vmx_on);
launch_context->vmcs_physical_address = memory::get_physical_address(&vm_state.vmcs);
launch_context->msr_bitmap_physical_address = memory::get_physical_address(vm_state.msr_bitmap);
launch_context->ept_pml4_physical_address = memory::get_physical_address(&vm_state.epml4);
//
// Update CR0 with the must-be-zero and must-be-one requirements
//
registers->cr0 &= launch_context->msr_data[7].LowPart;
registers->cr0 |= launch_context->msr_data[6].LowPart;
//
// Do the same for CR4
//
registers->cr4 &= launch_context->msr_data[9].LowPart;
registers->cr4 |= launch_context->msr_data[8].LowPart;
//
// Update host CR0 and CR4 based on the requirements above
//
__writecr0(registers->cr0);
__writecr4(registers->cr4);
//
// Enable VMX Root Mode
//
if (__vmx_on(&launch_context->vmx_on_physical_address))
{
return false;
}
//
// Clear the state of the VMCS, setting it to Inactive
//
if (__vmx_vmclear(&launch_context->vmcs_physical_address))
{
__vmx_off();
return false;
}
//
// Load the VMCS, setting its state to Active
//
if (__vmx_vmptrld(&launch_context->vmcs_physical_address))
{
__vmx_off();
return false;
}
//
// VMX Root Mode is enabled, with an active VMCS.
//
return true;
}
vmx::gdt_entry convert_gdt_entry(const uint64_t gdt_base, const uint16_t selector_value)
{
vmx::gdt_entry result{};
memset(&result, 0, sizeof(result));
segment_selector selector{};
selector.flags = selector_value;
//
// Reject LDT or NULL entries
//
if (selector.flags == 0 || selector.table)
{
result.limit = 0;
result.access_rights.flags = 0;
result.base = 0;
result.selector.flags = 0;
result.access_rights.unusable = 1;
return result;
}
//
// Read the GDT entry at the given selector, masking out the RPL bits.
//
const auto* gdt_entry = reinterpret_cast<segment_descriptor_64*>(gdt_base + static_cast<uint64_t>(selector.index) * 8);
//
// Write the selector directly
//
result.selector = selector;
//
// Use the LSL intrinsic to read the segment limit
//
result.limit = __segmentlimit(selector.flags);
//
// Build the full 64-bit effective address, keeping in mind that only when
// the System bit is unset, should this be done.
//
// NOTE: The Windows definition of KGDTENTRY64 is WRONG. The "System" field
// is incorrectly defined at the position of where the AVL bit should be.
// The actual location of the SYSTEM bit is encoded as the highest bit in
// the "Type" field.
//
result.base = 0;
result.base |= static_cast<uint64_t>(gdt_entry->base_address_low);
result.base |= static_cast<uint64_t>(gdt_entry->base_address_middle) << 16;
result.base |= static_cast<uint64_t>(gdt_entry->base_address_high) << 24;
if (gdt_entry->descriptor_type == 0u)
{
result.base |= static_cast<uint64_t>(gdt_entry->base_address_upper) << 32;
}
//
// Load the access rights
//
result.access_rights.flags = 0;
result.access_rights.type = gdt_entry->type;
result.access_rights.descriptor_type = gdt_entry->descriptor_type;
result.access_rights.descriptor_privilege_level = gdt_entry->descriptor_privilege_level;
result.access_rights.present = gdt_entry->present;
result.access_rights.reserved1 = gdt_entry->segment_limit_high;
result.access_rights.available_bit = gdt_entry->system;
result.access_rights.long_mode = gdt_entry->long_mode;
result.access_rights.default_big = gdt_entry->default_big;
result.access_rights.granularity = gdt_entry->granularity;
//
// Finally, handle the VMX-specific bits
//
result.access_rights.reserved1 = 0;
result.access_rights.unusable = !gdt_entry->present;
return result;
}
uint32_t adjust_msr(const ULARGE_INTEGER control_value, const uint64_t desired_value)
{
//
// VMX feature/capability MSRs encode the "must be 0" bits in the high word
// of their value, and the "must be 1" bits in the low word of their value.
// Adjust any requested capability/feature based on these requirements.
//
auto result = static_cast<uint32_t>(desired_value);
result &= control_value.HighPart;
result |= control_value.LowPart;
return result;
}
void vmx_handle_invd()
{
//
// This is the handler for the INVD instruction. Technically it may be more
// correct to use __invd instead of __wbinvd, but that intrinsic doesn't
// actually exist. Additionally, the Windows kernel (or HAL) don't contain
// any example of INVD actually ever being used. Finally, Hyper-V itself
// handles INVD by issuing WBINVD as well, so we'll just do that here too.
//
__wbinvd();
}
#define DPL_USER 3
#define DPL_SYSTEM 0
void vmx_handle_cpuid(vmx::guest_context& guest_context)
{
INT32 cpu_info[4];
//
// Check for the magic CPUID sequence, and check that it is coming from
// Ring 0. Technically we could also check the RIP and see if this falls
// in the expected function, but we may want to allow a separate "unload"
// driver or code at some point.
//
if ((guest_context.vp_regs->Rax == 0x41414141) &&
(guest_context.vp_regs->Rcx == 0x42424242) &&
((read_vmx(VMCS_GUEST_CS_SELECTOR) & SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK) == DPL_SYSTEM))
{
guest_context.exit_vm = true;
return;
}
//
// Otherwise, issue the CPUID to the logical processor based on the indexes
// on the VP's GPRs.
//
__cpuidex(cpu_info, static_cast<int32_t>(guest_context.vp_regs->Rax), static_cast<int32_t>(guest_context.vp_regs->Rcx));
//
// Check if this was CPUID 1h, which is the features request.
//
if (guest_context.vp_regs->Rax == 1)
{
//
// Set the Hypervisor Present-bit in RCX, which Intel and AMD have both
// reserved for this indication.
//
cpu_info[2] |= HYPERV_HYPERVISOR_PRESENT_BIT;
}
else if (guest_context.vp_regs->Rax == HYPERV_CPUID_INTERFACE)
{
//
// Return our interface identifier
//
cpu_info[0] = 'momo';
}
//
// Copy the values from the logical processor registers into the VP GPRs.
//
guest_context.vp_regs->Rax = cpu_info[0];
guest_context.vp_regs->Rbx = cpu_info[1];
guest_context.vp_regs->Rcx = cpu_info[2];
guest_context.vp_regs->Rdx = cpu_info[3];
}
void vmx_handle_xsetbv(const vmx::guest_context& guest_contex)
{
//
// Simply issue the XSETBV instruction on the native logical processor.
//
_xsetbv(static_cast<uint32_t>(guest_contex.vp_regs->Rcx),
guest_contex.vp_regs->Rdx << 32 | guest_contex.vp_regs->Rax);
}
void vmx_handle_vmx(vmx::guest_context& guest_contex)
{
//
// Set the CF flag, which is how VMX instructions indicate failure
//
guest_contex.guest_e_flags |= 0x1; // VM_FAIL_INVALID
//
// RFLAGs is actually restored from the VMCS, so update it here
//
__vmx_vmwrite(VMCS_GUEST_RFLAGS, guest_contex.guest_e_flags);
}
void vmx_dispatch_vm_exit(vmx::guest_context& guest_contex)
{
//
// This is the generic VM-Exit handler. Decode the reason for the exit and
// call the appropriate handler. As per Intel specifications, given that we
// have requested no optional exits whatsoever, we should only see CPUID,
// INVD, XSETBV and other VMX instructions. GETSEC cannot happen as we do
// not run in SMX context.
//
switch (guest_contex.exit_reason)
{
case VMX_EXIT_REASON_EXECUTE_CPUID:
vmx_handle_cpuid(guest_contex);
break;
case VMX_EXIT_REASON_EXECUTE_INVD:
vmx_handle_invd();
break;
case VMX_EXIT_REASON_EXECUTE_XSETBV:
vmx_handle_xsetbv(guest_contex);
break;
case VMX_EXIT_REASON_EXECUTE_VMCALL:
case VMX_EXIT_REASON_EXECUTE_VMCLEAR:
case VMX_EXIT_REASON_EXECUTE_VMLAUNCH:
case VMX_EXIT_REASON_EXECUTE_VMPTRLD:
case VMX_EXIT_REASON_EXECUTE_VMPTRST:
case VMX_EXIT_REASON_EXECUTE_VMREAD:
case VMX_EXIT_REASON_EXECUTE_VMRESUME:
case VMX_EXIT_REASON_EXECUTE_VMWRITE:
case VMX_EXIT_REASON_EXECUTE_VMXOFF:
case VMX_EXIT_REASON_EXECUTE_VMXON:
vmx_handle_vmx(guest_contex);
break;
default:
break;
}
//
// Move the instruction pointer to the next instruction after the one that
// caused the exit. Since we are not doing any special handling or changing
// of execution, this can be done for any exit reason.
//
guest_contex.guest_rip += read_vmx(VMCS_VMEXIT_INSTRUCTION_LENGTH);
__vmx_vmwrite(VMCS_GUEST_RIP, guest_contex.guest_rip);
}
extern "C" [[ noreturn ]] void vm_exit_handler(CONTEXT* context)
{
auto* vm_state = resolve_vm_state_from_context(*context);
//
// Build a little stack context to make it easier to keep track of certain
// guest state, such as the RIP/RSP/RFLAGS, and the exit reason. The rest
// of the general purpose registers come from the context structure that we
// captured on our own with RtlCaptureContext in the assembly entrypoint.
//
vmx::guest_context guest_context{};
guest_context.guest_e_flags = read_vmx(VMCS_GUEST_RFLAGS);
guest_context.guest_rip = read_vmx(VMCS_GUEST_RIP);
guest_context.guest_rsp = read_vmx(VMCS_GUEST_RSP);
guest_context.exit_reason = read_vmx(VMCS_EXIT_REASON) & 0xFFFF;
guest_context.vp_regs = context;
guest_context.exit_vm = false;
//
// Call the generic handler
//
vmx_dispatch_vm_exit(guest_context);
//
// Did we hit the magic exit sequence, or should we resume back to the VM
// context?
//
if (guest_context.exit_vm)
{
context->Rcx = 0x43434343;
//
// Perform any OS-specific CPU uninitialization work
//
restore_descriptor_tables(vm_state->launch_context);
//
// Our callback routine may have interrupted an arbitrary user process,
// and therefore not a thread running with a systemwide page directory.
// Therefore if we return back to the original caller after turning off
// VMX, it will keep our current "host" CR3 value which we set on entry
// to the PML4 of the SYSTEM process. We want to return back with the
// correct value of the "guest" CR3, so that the currently executing
// process continues to run with its expected address space mappings.
//
__writecr3(read_vmx(VMCS_GUEST_CR3));
//
// Finally, restore the stack, instruction pointer and EFLAGS to the
// original values present when the instruction causing our VM-Exit
// execute (such as ShvVpUninitialize). This will effectively act as
// a longjmp back to that location.
//
context->Rsp = guest_context.guest_rsp;
context->Rip = guest_context.guest_rip;
context->EFlags = static_cast<uint32_t>(guest_context.guest_e_flags);
//
// Turn off VMX root mode on this logical processor. We're done here.
//
__vmx_off();
}
else
{
//
// Return into a VMXRESUME intrinsic, which we broke out as its own
// function, in order to allow this to work. No assembly code will be
// needed as RtlRestoreContext will fix all the GPRs, and what we just
// did to RSP will take care of the rest.
//
context->Rip = reinterpret_cast<uint64_t>(resume_vmx);
}
//
// Restore the context to either ShvVmxResume, in which case the CPU's VMX
// facility will do the "true" return back to the VM (but without restoring
// GPRs, which is why we must do it here), or to the original guest's RIP,
// which we use in case an exit was requested. In this case VMX must now be
// off, and this will look like a longjmp to the original stack and RIP.
//
restore_context(context);
}
void setup_vmcs_for_cpu(vmx::state& vm_state)
{
auto* launch_context = &vm_state.launch_context;
auto* state = &launch_context->special_registers;
auto* context = &launch_context->context_frame;
//
// Begin by setting the link pointer to the required value for 4KB VMCS.
//
__vmx_vmwrite(VMCS_GUEST_VMCS_LINK_POINTER, ~0ULL);
//
// Enable EPT features if supported
//
if (launch_context->ept_controls.flags != 0)
{
ept_pointer vmx_eptp{};
vmx_eptp.flags = 0;
vmx_eptp.page_walk_length = 3;
vmx_eptp.memory_type = MEMORY_TYPE_WRITE_BACK;
vmx_eptp.page_frame_number = launch_context->ept_pml4_physical_address / PAGE_SIZE;
__vmx_vmwrite(VMCS_CTRL_EPT_POINTER, vmx_eptp.flags);
__vmx_vmwrite(VMCS_CTRL_VIRTUAL_PROCESSOR_IDENTIFIER, 1);
}
//
// Load the MSR bitmap. Unlike other bitmaps, not having an MSR bitmap will
// trap all MSRs, so we allocated an empty one.
//
__vmx_vmwrite(VMCS_CTRL_MSR_BITMAP_ADDRESS, launch_context->msr_bitmap_physical_address);
//
// Enable support for RDTSCP and XSAVES/XRESTORES in the guest. Windows 10
// makes use of both of these instructions if the CPU supports it. By using
// ShvUtilAdjustMsr, these options will be ignored if this processor does
// not actually support the instructions to begin with.
//
// Also enable EPT support, for additional performance and ability to trap
// memory access efficiently.
//
auto ept_controls = launch_context->ept_controls;
ept_controls.enable_rdtscp = 1;
ept_controls.enable_invpcid = 1;
ept_controls.enable_xsaves = 1;
__vmx_vmwrite(VMCS_CTRL_SECONDARY_PROCESSOR_BASED_VM_EXECUTION_CONTROLS,
adjust_msr(launch_context->msr_data[11], ept_controls.flags));
//
// Enable no pin-based options ourselves, but there may be some required by
// the processor. Use ShvUtilAdjustMsr to add those in.
//
__vmx_vmwrite(VMCS_CTRL_PIN_BASED_VM_EXECUTION_CONTROLS, adjust_msr(launch_context->msr_data[13], 0));
//
// In order for our choice of supporting RDTSCP and XSAVE/RESTORES above to
// actually mean something, we have to request secondary controls. We also
// want to activate the MSR bitmap in order to keep them from being caught.
//
ia32_vmx_procbased_ctls_register procbased_ctls_register{};
procbased_ctls_register.activate_secondary_controls = 1;
procbased_ctls_register.use_msr_bitmaps = 1;
__vmx_vmwrite(VMCS_CTRL_PROCESSOR_BASED_VM_EXECUTION_CONTROLS,
adjust_msr(launch_context->msr_data[14],
procbased_ctls_register.flags));
//
// Make sure to enter us in x64 mode at all times.
//
ia32_vmx_exit_ctls_register exit_ctls_register{};
exit_ctls_register.host_address_space_size = 1;
__vmx_vmwrite(VMCS_CTRL_VMEXIT_CONTROLS,
adjust_msr(launch_context->msr_data[15],
exit_ctls_register.flags));
//
// As we exit back into the guest, make sure to exist in x64 mode as well.
//
ia32_vmx_entry_ctls_register entry_ctls_register{};
entry_ctls_register.ia32e_mode_guest = 1;
__vmx_vmwrite(VMCS_CTRL_VMENTRY_CONTROLS,
adjust_msr(launch_context->msr_data[16],
entry_ctls_register.flags));
//
// Load the CS Segment (Ring 0 Code)
//
vmx::gdt_entry gdt_entry{};
gdt_entry = convert_gdt_entry(state->gdtr.base_address, context->SegCs);
__vmx_vmwrite(VMCS_GUEST_CS_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_CS_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_CS_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_CS_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_CS_SELECTOR, context->SegCs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the SS Segment (Ring 0 Data)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, context->SegSs);
__vmx_vmwrite(VMCS_GUEST_SS_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_SS_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_SS_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_SS_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_SS_SELECTOR, context->SegSs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the DS Segment (Ring 3 Data)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, context->SegDs);
__vmx_vmwrite(VMCS_GUEST_DS_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_DS_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_DS_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_DS_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_DS_SELECTOR, context->SegDs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the ES Segment (Ring 3 Data)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, context->SegEs);
__vmx_vmwrite(VMCS_GUEST_ES_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_ES_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_ES_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_ES_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_ES_SELECTOR, context->SegEs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the FS Segment (Ring 3 Compatibility-Mode TEB)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, context->SegFs);
__vmx_vmwrite(VMCS_GUEST_FS_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_FS_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_FS_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_FS_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_FS_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_FS_SELECTOR, context->SegFs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the GS Segment (Ring 3 Data if in Compatibility-Mode, MSR-based in Long Mode)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, context->SegGs);
__vmx_vmwrite(VMCS_GUEST_GS_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_GS_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_GS_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_GS_BASE, state->msr_gs_base);
__vmx_vmwrite(VMCS_HOST_GS_BASE, state->msr_gs_base);
__vmx_vmwrite(VMCS_HOST_GS_SELECTOR, context->SegGs & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the Task Register (Ring 0 TSS)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, state->tr);
__vmx_vmwrite(VMCS_GUEST_TR_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_TR_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_TR_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_TR_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_TR_BASE, gdt_entry.base);
__vmx_vmwrite(VMCS_HOST_TR_SELECTOR, state->tr & ~SEGMENT_ACCESS_RIGHTS_DESCRIPTOR_PRIVILEGE_LEVEL_MASK);
//
// Load the Local Descriptor Table (Ring 0 LDT on Redstone)
//
gdt_entry = convert_gdt_entry(state->gdtr.base_address, state->ldtr);
__vmx_vmwrite(VMCS_GUEST_LDTR_SELECTOR, gdt_entry.selector.flags);
__vmx_vmwrite(VMCS_GUEST_LDTR_LIMIT, gdt_entry.limit);
__vmx_vmwrite(VMCS_GUEST_LDTR_ACCESS_RIGHTS, gdt_entry.access_rights.flags);
__vmx_vmwrite(VMCS_GUEST_LDTR_BASE, gdt_entry.base);
//
// Now load the GDT itself
//
__vmx_vmwrite(VMCS_GUEST_GDTR_BASE, state->gdtr.base_address);
__vmx_vmwrite(VMCS_GUEST_GDTR_LIMIT, state->gdtr.limit);
__vmx_vmwrite(VMCS_HOST_GDTR_BASE, state->gdtr.base_address);
//
// And then the IDT
//
__vmx_vmwrite(VMCS_GUEST_IDTR_BASE, state->idtr.base_address);
__vmx_vmwrite(VMCS_GUEST_IDTR_LIMIT, state->idtr.limit);
__vmx_vmwrite(VMCS_HOST_IDTR_BASE, state->idtr.base_address);
//
// Load CR0
//
__vmx_vmwrite(VMCS_CTRL_CR0_READ_SHADOW, state->cr0);
__vmx_vmwrite(VMCS_HOST_CR0, state->cr0);
__vmx_vmwrite(VMCS_GUEST_CR0, state->cr0);
//
// Load CR3 -- do not use the current process' address space for the host,
// because we may be executing in an arbitrary user-mode process right now
// as part of the DPC interrupt we execute in.
//
__vmx_vmwrite(VMCS_HOST_CR3, launch_context->system_directory_table_base);
__vmx_vmwrite(VMCS_GUEST_CR3, state->cr3);
//
// Load CR4
//
__vmx_vmwrite(VMCS_HOST_CR4, state->cr4);
__vmx_vmwrite(VMCS_GUEST_CR4, state->cr4);
__vmx_vmwrite(VMCS_CTRL_CR4_READ_SHADOW, state->cr4);
//
// Load debug MSR and register (DR7)
//
__vmx_vmwrite(VMCS_GUEST_DEBUGCTL, state->debug_control);
__vmx_vmwrite(VMCS_GUEST_DR7, state->kernel_dr7);
//
// Finally, load the guest stack, instruction pointer, and rflags, which
// corresponds exactly to the location where RtlCaptureContext will return
// to inside of ShvVpInitialize.
//
const auto stack_pointer = reinterpret_cast<uintptr_t>(vm_state.stack_buffer) + KERNEL_STACK_SIZE - sizeof(CONTEXT);
__vmx_vmwrite(VMCS_GUEST_RSP, stack_pointer);
__vmx_vmwrite(VMCS_GUEST_RIP, reinterpret_cast<uintptr_t>(vm_launch));
__vmx_vmwrite(VMCS_GUEST_RFLAGS, context->EFlags);
//
// Load the hypervisor entrypoint and stack. We give ourselves a standard
// size kernel stack (24KB) and bias for the context structure that the
// hypervisor entrypoint will push on the stack, avoiding the need for RSP
// modifying instructions in the entrypoint. Note that the CONTEXT pointer
// and thus the stack itself, must be 16-byte aligned for ABI compatibility
// with AMD64 -- specifically, XMM operations will fail otherwise, such as
// the ones that RtlCaptureContext will perform.
//
C_ASSERT((KERNEL_STACK_SIZE - sizeof(CONTEXT)) % 16 == 0);
__vmx_vmwrite(VMCS_HOST_RSP, stack_pointer);
__vmx_vmwrite(VMCS_HOST_RIP, reinterpret_cast<uintptr_t>(vm_exit));
}
void initialize_msrs(vmx::launch_context& launch_context)
{
constexpr auto msr_count = sizeof(launch_context.msr_data) / sizeof(launch_context.msr_data[0]);
for (auto i = 0u; i < msr_count; ++i)
{
launch_context.msr_data[i].QuadPart = __readmsr(IA32_VMX_BASIC + i);
}
}
[[ noreturn ]] void launch_hypervisor(vmx::state& vm_state)
{
initialize_msrs(vm_state.launch_context);
initialize_mtrr(vm_state.launch_context);
initialize_ept(vm_state);
if (!enter_root_mode_on_cpu(vm_state))
{
throw std::runtime_error("Not available");
}
setup_vmcs_for_cpu(vm_state);
auto error_code = launch_vmx();
throw std::runtime_error(string::va("Failed to launch vmx: %X", error_code));
}
void hypervisor::enable_core(const uint64_t system_directory_table_base)
{
debug_log("Enabling hypervisor on core %d\n", thread::get_processor_index());
auto* vm_state = this->get_current_vm_state();
vm_state->launch_context.system_directory_table_base = system_directory_table_base;
capture_cpu_context(vm_state->launch_context);
const rflags rflags{.flags = __readeflags()};
if (!rflags.alignment_check_flag)
{
launch_hypervisor(*vm_state);
}
if (!is_hypervisor_present())
{
throw std::runtime_error("Hypervisor is not present");
}
}
void hypervisor::disable_core()
{
debug_log("Disabling hypervisor on core %d\n", thread::get_processor_index());
int32_t cpu_info[4]{0};
__cpuidex(cpu_info, 0x41414141, 0x42424242);
if (this->is_enabled())
{
debug_log("Shutdown for core %d failed. Issuing kernel panic!\n", thread::get_processor_index());
KeBugCheckEx(DRIVER_VIOLATION, 1, 0, 0, 0);
}
}
void hypervisor::allocate_vm_states()
{
if (this->vm_states_)
{
throw std::runtime_error("VM states are still in use");
}
// As Windows technically supports cpu hot-plugging, keep track of the allocation count.
// However virtualizing the hot-plugged cpu won't be supported here.
this->vm_state_count_ = thread::get_processor_count();
this->vm_states_ = new vmx::state*[this->vm_state_count_]{};
for (auto i = 0u; i < this->vm_state_count_; ++i)
{
this->vm_states_[i] = memory::allocate_aligned_object<vmx::state>();
if (!this->vm_states_[i])
{
throw std::runtime_error("Failed to allocate VM state entries");
}
}
}
void hypervisor::free_vm_states()
{
if (!this->vm_states_)
{
return;
}
for (auto i = 0u; i < this->vm_state_count_; ++i)
{
memory::free_aligned_memory(this->vm_states_[i]);
}
delete[] this->vm_states_;
this->vm_states_ = nullptr;
this->vm_state_count_ = 0;
}
vmx::state* hypervisor::get_current_vm_state() const
{
const auto current_core = thread::get_processor_index();
if (current_core >= this->vm_state_count_)
{
return nullptr;
}
return this->vm_states_[current_core];
}