iw2_bot_warfare/maps/mp/bots/_bot_utility.gsc
2023-12-11 16:58:53 -06:00

2370 lines
42 KiB
Plaintext

#include maps\mp\_utility;
/*
Waits for the built-ins to be defined
*/
wait_for_builtins()
{
for ( i = 0; i < 20; i++ )
{
if ( isDefined( level.bot_builtins ) )
return true;
if ( i < 18 )
waittillframeend;
else
wait 0.05;
}
return false;
}
/*
Prints to console without dev script on
*/
BotBuiltinPrintConsole( s )
{
if ( isDefined( level.bot_builtins ) && isDefined( level.bot_builtins["printconsole"] ) )
{
[[ level.bot_builtins["printconsole" ]]]( s );
}
}
/*
Bot action, does a bot action
<client> botAction(<action string (+ or - then action like frag or smoke)>)
*/
BotBuiltinBotAction( action )
{
if ( isDefined( level.bot_builtins ) && isDefined( level.bot_builtins["botaction"] ) )
{
self [[ level.bot_builtins["botaction" ]]]( action );
}
}
/*
Clears the bot from movement and actions
<client> botStop()
*/
BotBuiltinBotStop()
{
if ( isDefined( level.bot_builtins ) && isDefined( level.bot_builtins["botstop"] ) )
{
self [[ level.bot_builtins["botstop" ]]]();
}
}
/*
Sets the bot's movement
<client> botMovement(<int left>, <int forward>)
*/
BotBuiltinBotMovement( forward, right )
{
if ( isDefined( level.bot_builtins ) && isDefined( level.bot_builtins["botmovement"] ) )
{
self [[ level.bot_builtins["botmovement" ]]]( forward, right );
}
}
/*
Test if is a bot
*/
BotBuiltinIsBot()
{
if ( isDefined( level.bot_builtins ) && isDefined( level.bot_builtins["isbot"] ) )
{
return self [[ level.bot_builtins["isbot" ]]]();
}
return false;
}
/*
Returns if player is the host
*/
is_host()
{
return ( isDefined( self.pers["bot_host"] ) && self.pers["bot_host"] );
}
/*
Setups the host variable on the player
*/
doHostCheck()
{
self.pers["bot_host"] = false;
if ( self is_bot() )
return;
result = false;
if ( getCvar( "bots_main_firstIsHost" ) != "0" )
{
BotBuiltinPrintConsole( "WARNING: bots_main_firstIsHost is enabled" );
if ( getCvar( "bots_main_firstIsHost" ) == "1" )
{
setCvar( "bots_main_firstIsHost", self getguid() );
}
if ( getCvar( "bots_main_firstIsHost" ) == self getguid() + "" )
result = true;
}
DvarGUID = getCvar( "bots_main_GUIDs" );
if ( DvarGUID != "" )
{
guids = strtok( DvarGUID, "," );
for ( i = 0; i < guids.size; i++ )
{
if ( self getguid() + "" == guids[i] )
result = true;
}
}
if ( !result )
return;
self.pers["bot_host"] = true;
}
/*
Returns if the player is a bot.
*/
is_bot()
{
return ( ( isDefined( self.pers["isBot"] ) && self.pers["isBot"] ) || ( isDefined( self.pers["isBotWarfare"] ) && self.pers["isBotWarfare"] ) || self BotBuiltinIsBot() );
}
/*
iw5
*/
allowClassChoice()
{
return true;
}
/*
iw5
*/
allowTeamChoice()
{
return true;
}
/*
Bot presses the button for time.
*/
BotPressAttack( time )
{
self maps\mp\bots\_bot_internal::pressFire( time );
}
/*
Bot presses the ads button for time.
*/
BotPressADS( time )
{
self maps\mp\bots\_bot_internal::pressADS( time );
}
/*
Bot presses the use button for time.
*/
BotPressUse( time )
{
self maps\mp\bots\_bot_internal::use( time );
}
/*
Bot presses the frag button for time.
*/
BotPressFrag( time )
{
self maps\mp\bots\_bot_internal::frag( time );
}
/*
Bot presses the smoke button for time.
*/
BotPressSmoke( time )
{
self maps\mp\bots\_bot_internal::smoke( time );
}
/*
Returns the bot's random assigned number.
*/
BotGetRandom()
{
return self.bot.rand;
}
/*
Returns a random number thats different everytime it changes target
*/
BotGetTargetRandom()
{
if ( !isDefined( self.bot.target ) )
return undefined;
return self.bot.target.rand;
}
/*
Returns if the bot is fragging.
*/
IsBotFragging()
{
return self.bot.isfraggingafter;
}
/*
Returns if the bot is pressing smoke button.
*/
IsBotSmoking()
{
return self.bot.issmokingafter;
}
/*
Returns if the bot is reloading.
*/
IsBotReloading()
{
return self.bot.isreloading;
}
/*
Is bot knifing
*/
IsBotKnifing()
{
return self.bot.isknifingafter;
}
/*
Freezes the bot's controls.
*/
BotFreezeControls( what )
{
self.bot.isfrozen = what;
if ( what )
self notify( "kill_goal" );
}
/*
Returns if the bot is script frozen.
*/
BotIsFrozen()
{
return self.bot.isfrozen;
}
/*
Bot will stop moving
*/
BotStopMoving( what )
{
self.bot.stop_move = what;
if ( what )
self notify( "kill_goal" );
}
/*
Notify the bot chat message
*/
BotNotifyBotEvent( msg, a, b, c, d, e, f, g )
{
self notify( "bot_event", msg, a, b, c, d, e, f, g );
}
/*
Returns if the bot has a script goal.
(like t5 gsc bot)
*/
HasScriptGoal()
{
return ( isDefined( self GetScriptGoal() ) );
}
/*
Returns the pos of the bot's goal
*/
GetScriptGoal()
{
return self.bot.script_goal;
}
/*
Sets the bot's goal, will acheive it when dist away from it.
*/
SetScriptGoal( goal, dist )
{
if ( !isDefined( dist ) )
dist = 16;
self.bot.script_goal = goal;
self.bot.script_goal_dist = dist;
waittillframeend;
self notify( "new_goal_internal" );
self notify( "new_goal" );
}
/*
Clears the bot's goal.
*/
ClearScriptGoal()
{
self SetScriptGoal( undefined, 0 );
}
/*
Sets the aim position of the bot
*/
SetScriptAimPos( pos )
{
self.bot.script_aimpos = pos;
}
/*
Clears the aim position of the bot
*/
ClearScriptAimPos()
{
self SetScriptAimPos( undefined );
}
/*
Returns the aim position of the bot
*/
GetScriptAimPos()
{
return self.bot.script_aimpos;
}
/*
Returns if the bot has a aim pos
*/
HasScriptAimPos()
{
return isDefined( self GetScriptAimPos() );
}
/*
Sets the bot's target to be this ent.
*/
SetAttacker( att )
{
self.bot.target_this_frame = att;
}
/*
Sets the script enemy for a bot.
*/
SetScriptEnemy( enemy, offset )
{
self.bot.script_target = enemy;
self.bot.script_target_offset = offset;
}
/*
Removes the script enemy of the bot.
*/
ClearScriptEnemy()
{
self SetScriptEnemy( undefined, undefined );
}
/*
Returns the entity of the bot's target.
*/
GetThreat()
{
if ( !isdefined( self.bot.target ) )
return undefined;
return self.bot.target.entity;
}
/*
Returns if the bot has a script enemy.
*/
HasScriptEnemy()
{
return ( isDefined( self.bot.script_target ) );
}
/*
Returns if the bot has a threat.
*/
HasThreat()
{
return ( isDefined( self GetThreat() ) );
}
/*
Returns whether the bot has a priority objective
*/
HasPriorityObjective()
{
return self.bot.prio_objective;
}
/*
Sets the bot to prioritize the objective over targeting enemies
*/
SetPriorityObjective()
{
self.bot.prio_objective = true;
self notify( "kill_goal" );
}
/*
Clears the bot's priority objective to allow the bot to target enemies automatically again
*/
ClearPriorityObjective()
{
self.bot.prio_objective = false;
self notify( "kill_goal" );
}
/*
If the site is in use
*/
isInUse()
{
return ( isDefined( self.planting ) && self.planting ) || ( isDefined( self.defusing ) && self.defusing );
}
/*
Returns a random grenade in the bot's inventory.
*/
getValidGrenade()
{
grenadeTypes = [];
grenadeTypes[0] = "frag_grenade_american_mp";
grenadeTypes[1] = "smoke_grenade_american_mp";
grenadeTypes[2] = "frag_grenade_british_mp";
grenadeTypes[3] = "smoke_grenade_british_mp";
grenadeTypes[4] = "frag_grenade_russian_mp";
grenadeTypes[5] = "smoke_grenade_russian_mp";
grenadeTypes[6] = "frag_grenade_german_mp";
grenadeTypes[7] = "smoke_grenade_german_mp";
possibles = [];
for ( i = 0; i < grenadeTypes.size; i++ )
{
if ( !self hasWeapon( grenadeTypes[i] ) )
continue;
if ( !self getAmmoCount( grenadeTypes[i] ) )
continue;
possibles[possibles.size] = grenadeTypes[i];
}
return random( possibles );
}
/*
Is second greande
*/
isSecondaryGrenade( nade )
{
return isSubStr( nade, "smoke_grenade_" );
}
/*
CoD2
*/
isMantling()
{
return false;
}
/*
CoD2
*/
isOnLadder()
{
return false;
}
/*
CoD2
*/
weaponClass( weap )
{
answer = level.bots_weapon_class_names[weap];
if ( !isDefined( answer ) )
answer = "";
return answer;
}
/*
CoD2
*/
WeaponClipSize( weap )
{
answer = level.bots_weapon_clip_sizes[weap];
if ( !isDefined( answer ) )
answer = 1;
return answer;
}
/*
CoD2
*/
getWeaponSlot( weap )
{
if ( self getweaponslotweapon( "primary" ) == weap )
return "primary";
else
return "primaryb";
}
/*
cOD2
*/
GetAmmoCount( weap )
{
slot = self getWeaponSlot( weap );
return self GetWeaponSlotClipAmmo( slot ) + self GetWeaponSlotAmmo( slot );
}
/*
IsWeaponClipOnly cod2
*/
IsWeaponClipOnly( weap )
{
return isSubStr( weap, "grenade_" );
}
/*
CoD2
*/
getStance()
{
myEye = self getTagOrigin( "tag_eye" );
height = myEye[2] - self.origin[2];
if ( height > 50 )
return "stand";
if ( height < 20 )
return "prone";
return "crouch";
}
/*
CoD2
*/
getVelocity()
{
if ( !isAlive( self ) )
return ( 0, 0, 0 );
return self.velocity;
}
/*
If the model of the player is good
*/
IsPlayerModelOK()
{
return ( isDefined( self.bot_model_fix ) );
}
/*
Returns if the given weapon is full auto.
*/
WeaponIsFullAuto( weap )
{
weaptoks = strtok( weap, "_" );
return isDefined( weaptoks[0] ) && isString( weaptoks[0] ) && isdefined( level.bots_fullautoguns[weaptoks[0]] );
}
/*
Returns what our eye height is.
*/
GetEyeHeight()
{
stance = self GetStance();
if ( stance == "prone" )
{
return 11;
}
if ( stance == "crouch" )
{
return 40;
}
return 60;
}
/*
some mbot magic idea
*/
getTagOrigin( where )
{
if ( !isAlive( self ) )
return ( 0, 0, 0 );
if ( !isDefined( self.bot_model_fix ) )
return self.origin;
if ( !isDefined( self.tags ) )
{
self.tags = [];
self.tagMap = [];
}
if ( isDefined( self.tagMap[where] ) )
return self.tagMap[where].origin;
obj = spawn( "script_origin", ( 0, 0, 0 ) );
obj linkto( self, where, ( 0, 0, 0 ), ( 0, 0, 0 ) );
self.tags[self.tags.size] = obj;
self.tagMap[where] = obj;
return self.origin;
}
/*
Returns (iw4) eye pos.
*/
GetEyePos()
{
return self.origin + ( 0, 0, self GetEyeHeight() );
}
/*
helper
*/
waittill_either_return_( str1, str2 )
{
self endon( str1 );
self waittill( str2 );
return true;
}
/*
Returns which string gets notified first
*/
waittill_either_return( str1, str2 )
{
if ( !isDefined( self waittill_either_return_( str1, str2 ) ) )
return str1;
return str2;
}
/*
Waits until either of the nots.
*/
waittill_either( not, not1 )
{
self endon( not );
self waittill( not1 );
}
/*
New gsc
*/
waittill_string( msg, ent )
{
if ( msg != "death" )
self endon( "death" );
ent endon( "die" );
self waittill( msg );
ent notify( "returned", msg );
}
/*
Taken from iw4 script
*/
waittill_any_timeout( timeOut, string1, string2, string3, string4, string5 )
{
if ( ( !isdefined( string1 ) || string1 != "death" ) &&
( !isdefined( string2 ) || string2 != "death" ) &&
( !isdefined( string3 ) || string3 != "death" ) &&
( !isdefined( string4 ) || string4 != "death" ) &&
( !isdefined( string5 ) || string5 != "death" ) )
self endon( "death" );
ent = spawnstruct();
if ( isdefined( string1 ) )
self thread waittill_string( string1, ent );
if ( isdefined( string2 ) )
self thread waittill_string( string2, ent );
if ( isdefined( string3 ) )
self thread waittill_string( string3, ent );
if ( isdefined( string4 ) )
self thread waittill_string( string4, ent );
if ( isdefined( string5 ) )
self thread waittill_string( string5, ent );
ent thread _timeout( timeOut );
ent waittill( "returned", msg );
ent notify( "die" );
return msg;
}
/*
Used for waittill_any_timeout
*/
_timeout( delay )
{
self endon( "die" );
wait( delay );
self notify( "returned", "timeout" );
}
/*
If the weapon is allowed to be dropped
*/
isWeaponDroppable( weap )
{
return ( maps\mp\gametypes\_weapons::isPistol( weap ) || maps\mp\gametypes\_weapons::isMainWeapon( weap ) );
}
/*
Selects a random element from the array.
*/
Random( arr )
{
size = arr.size;
if ( !size )
return undefined;
return arr[randomInt( size )];
}
/*
Removes an item from the array.
*/
array_remove( ents, remover )
{
newents = [];
for ( i = 0; i < ents.size; i++ )
{
index = ents[i];
if ( index != remover )
newents[ newents.size ] = index;
}
return newents;
}
/*
Waits until not or tim.
*/
waittill_notify_or_timeout( not, tim )
{
self endon( not );
wait tim;
}
/*
Gets a player who is host
*/
GetHostPlayer()
{
for ( i = 0; i < level.players.size; i++ )
{
player = level.players[i];
if ( !player is_host() )
continue;
return player;
}
return undefined;
}
/*
Waits for a host player
*/
bot_wait_for_host()
{
host = undefined;
while ( !isDefined( level ) || !isDefined( level.players ) )
wait 0.05;
for ( i = getCvarFloat( "bots_main_waitForHostTime" ); i > 0; i -= 0.05 )
{
host = GetHostPlayer();
if ( isDefined( host ) )
break;
wait 0.05;
}
if ( !isDefined( host ) )
return;
for ( i = getCvarFloat( "bots_main_waitForHostTime" ); i > 0; i -= 0.05 )
{
if ( IsDefined( host.pers[ "team" ] ) )
break;
wait 0.05;
}
if ( !IsDefined( host.pers[ "team" ] ) )
return;
for ( i = getCvarFloat( "bots_main_waitForHostTime" ); i > 0; i -= 0.05 )
{
if ( host.pers[ "team" ] == "allies" || host.pers[ "team" ] == "axis" )
break;
wait 0.05;
}
}
/*
Babylonian_method
*/
sqrt( num )
{
res = 0;
bit = 1 << 30; // The second-to-top bit is set.
// Same as ((unsigned) INT32_MAX + 1) / 2.
// "bit" starts at the highest power of four <= the argument.
while ( bit > num )
bit >>= 2;
while ( bit != 0 )
{
if ( num >= res + bit )
{
num -= res + bit;
res = ( res >> 1 ) + bit;
}
else
res >>= 1;
bit >>= 2;
}
return res;
}
/*
Pezbot's line sphere intersection.
http://paulbourke.net/geometry/circlesphere/raysphere.c
*/
RaySphereIntersect( start, end, spherePos, radius )
{
// check if the start or end points are in the sphere
r2 = radius * radius;
if ( DistanceSquared( start, spherePos ) < r2 )
return true;
if ( DistanceSquared( end, spherePos ) < r2 )
return true;
// check if the line made by start and end intersect the sphere
dp = end - start;
a = dp[0] * dp[0] + dp[1] * dp[1] + dp[2] * dp[2];
b = 2 * ( dp[0] * ( start[0] - spherePos[0] ) + dp[1] * ( start[1] - spherePos[1] ) + dp[2] * ( start[2] - spherePos[2] ) );
c = spherePos[0] * spherePos[0] + spherePos[1] * spherePos[1] + spherePos[2] * spherePos[2];
c += start[0] * start[0] + start[1] * start[1] + start[2] * start[2];
c -= 2.0 * ( spherePos[0] * start[0] + spherePos[1] * start[1] + spherePos[2] * start[2] );
c -= radius * radius;
bb4ac = b * b - 4.0 * a * c;
if ( abs( a ) < 0.0001 || bb4ac < 0 )
return false;
mu1 = ( 0 - b + sqrt( bb4ac ) ) / ( 2 * a );
//mu2 = (0-b - sqrt(bb4ac)) / (2 * a);
// intersection points of the sphere
ip1 = start + vector_scale( dp, mu1 );
//ip2 = start + mu2 * dp;
myDist = DistanceSquared( start, end );
// check if both intersection points far
if ( DistanceSquared( start, ip1 ) > myDist/* && DistanceSquared(start, ip2) > myDist*/ )
return false;
dpAngles = VectorToAngles( dp );
// check if the point is behind us
if ( getConeDot( ip1, start, dpAngles ) < 0/* || getConeDot(ip2, start, dpAngles) < 0*/ )
return false;
return true;
}
/*
Scales the vector
*/
vector_scale( vec, scale )
{
vec = ( vec[0] * scale, vec[1] * scale, vec[2] * scale );
return vec;
}
/*
Returns if a smoke grenade would intersect start to end line.
*/
SmokeTrace( start, end, rad )
{
for ( i = level.bots_smokeList.count - 1; i >= 0; i-- )
{
nade = level.bots_smokeList.data[i];
if ( !RaySphereIntersect( start, end, nade.origin, rad ) )
continue;
return false;
}
return true;
}
/*
Returns the cone dot (like fov, or distance from the center of our screen). 1.0 = directly looking at, 0.0 = completely right angle, -1.0, completely 180
*/
getConeDot( to, from, dir )
{
dirToTarget = VectorNormalize( to - from );
forward = AnglesToForward( dir );
return vectordot( dirToTarget, forward );
}
/*
Returns the distance squared in a 2d space
*/
DistanceSquared2D( to, from )
{
to = ( to[0], to[1], 0 );
from = ( from[0], from[1], 0 );
return DistanceSquared( to, from );
}
/*
Rounds to the nearest whole number.
*/
RoundNum( x )
{
y = int( x );
if ( abs( x ) - abs( y ) > 0.5 )
{
if ( x < 0 )
return y - 1;
else
return y + 1;
}
else
return y;
}
/*
Rounds up the given value.
*/
RoundUp( floatVal )
{
i = int( floatVal );
if ( i != floatVal )
return i + 1;
else
return i;
}
/*
clamps angle between -180 and 180
*/
AngleClamp180( angle )
{
angleFrac = angle / 360.0;
angle = ( angleFrac - int( angleFrac ) ) * 360.0;
if ( angle > 180.0 )
return angle - 360.0;
return angle;
}
/*
no max, really??
*/
max( a, b )
{
if ( a > b )
return a;
return b;
}
/*
no min, really??
*/
min( a, b )
{
if ( a > b )
return b;
return a;
}
/*
Clamps between value
*/
Clamp( a, minv, maxv )
{
return max( min( a, maxv ), minv );
}
/*
Matches a num to a char
*/
keyCodeToString( a )
{
b = "";
switch ( a )
{
case 0:
b = "a";
break;
case 1:
b = "b";
break;
case 2:
b = "c";
break;
case 3:
b = "d";
break;
case 4:
b = "e";
break;
case 5:
b = "f";
break;
case 6:
b = "g";
break;
case 7:
b = "h";
break;
case 8:
b = "i";
break;
case 9:
b = "j";
break;
case 10:
b = "k";
break;
case 11:
b = "l";
break;
case 12:
b = "m";
break;
case 13:
b = "n";
break;
case 14:
b = "o";
break;
case 15:
b = "p";
break;
case 16:
b = "q";
break;
case 17:
b = "r";
break;
case 18:
b = "s";
break;
case 19:
b = "t";
break;
case 20:
b = "u";
break;
case 21:
b = "v";
break;
case 22:
b = "w";
break;
case 23:
b = "x";
break;
case 24:
b = "y";
break;
case 25:
b = "z";
break;
case 26:
b = ".";
break;
case 27:
b = " ";
break;
}
return b;
}
/*
Parses tokens into a waypoint obj
*/
parseTokensIntoWaypoint( tokens )
{
waypoint = spawnStruct();
orgStr = tokens[0];
orgToks = strtok( orgStr, " " );
waypoint.origin = ( float_old( orgToks[0] ), float_old( orgToks[1] ), float_old( orgToks[2] ) );
childStr = tokens[1];
childToks = strtok( childStr, " " );
waypoint.children = [];
for ( j = 0; j < childToks.size; j++ )
waypoint.children[j] = int( childToks[j] );
type = tokens[2];
waypoint.type = type;
anglesStr = tokens[3];
if ( isDefined( anglesStr ) && anglesStr != "" )
{
anglesToks = strtok( anglesStr, " " );
if ( anglesToks.size >= 3 )
waypoint.angles = ( float_old( anglesToks[0] ), float_old( anglesToks[1] ), float_old( anglesToks[2] ) );
}
return waypoint;
}
/*
Read from file a csv, and returns an array of waypoints
*/
readWpsFromFile( mapname )
{
waypoints = [];
filename = mapname + "_wp.csv";
f = openfile( filename, "read" );
if ( f < 0 )
return waypoints;
BotBuiltinPrintConsole( "Attempting to read waypoints from " + filename );
for ( ;; )
{
argc = fReadLn( f );
if ( argc <= 0 )
break;
waypointCount = int( fgetarg( f, 0 ) );
if ( waypointCount <= 0 )
break;
for ( i = 1; i <= waypointCount; i++ )
{
argc = fReadLn( f );
line = "";
for ( h = 0; h < argc; h++ )
{
line += fgetarg( f, h );
if ( h < argc - 1 )
line += ",";
}
if ( !isDefined( line ) || line == "" )
continue;
tokens = strtok( line, "," );
waypoint = parseTokensIntoWaypoint( tokens );
waypoints[i - 1] = waypoint;
}
break;
}
closeFile( f );
return waypoints;
}
/*
converts a string into a float
*/
float_old( num )
{
setCvar( "temp_dvar_bot_util", num );
return GetCvarFloat( "temp_dvar_bot_util" );
}
/*
Try mbot wps
*/
loadmbotWps( mapname, gametype )
{
f = openfile( mapname + "_" + gametype + ".wp", "read" );
wps = [];
if ( f < 0 )
f = openfile( mapname + "_" + gametype + ".tmp", "read" );
if ( f < 0 )
return wps;
argc = fReadLn( f );
if ( argc <= 0 )
{
closeFile( f );
return wps;
}
arg = fgetarg( f, 0 );
if ( !isDefined( arg ) || arg != "mbotwp" )
{
closeFile( f );
return wps;
}
i = 0;
while ( freadln( f ) != -1 )
{
s = fgetarg( f, 0 );
t = strtok( s, " ," );
if ( !isDefined( t ) || t.size < 6 )
break;
wp = spawnStruct();
wp.origin = ( float_old( t[0] ), float_old( t[1] ), float_old( t[2] ) );
stance = "stand";
if ( t[4] == "1" )
stance = "crouch";
else if ( t[4] == "2" )
stance = "prone";
wp.children = [];
k = 0;
for ( k = 0; k < int( t[5] ); k++ )
wp.children[k] = int( t[6 + k] );
if ( t[3] == "l" || t[3] == "m" || t[3] == "f" || t[3] == "j" )
wp.type = "climb";
else if ( t[3] == "g" )
wp.type = "grenade";
else if ( t[3] == "c" )
{
wp.type = "crouch";
wpc = wp.children[0];
wp.children = [];
wp.children[0] = wpc;
}
else
wp.type = stance;
if ( ( t.size == 9 && t[3] == "w" && t[5] == "1" ) || t[3] == "g" || t[3] == "c" )
{
k += 6;
wp.angles = ( float_old( t[k] ), float_old( t[k + 1] ), 0.0 );
}
wps[i] = wp;
i++;
}
closeFile( f );
return wps;
}
/*
Loads the waypoints. Populating everything needed for the waypoints.
*/
load_waypoints()
{
mapname = getCvar( "mapname" );
level.waypointCount = 0;
level.waypointUsage = [];
level.waypointUsage["allies"] = [];
level.waypointUsage["axis"] = [];
if ( !isDefined( level.waypoints ) )
level.waypoints = [];
wps = readWpsFromFile( mapname );
if ( wps.size )
{
level.waypoints = wps;
BotBuiltinPrintConsole( "Loaded " + wps.size + " waypoints from file." );
}
else
{
switch ( mapname )
{
default:
maps\mp\bots\waypoints\_custom_map::main( mapname );
break;
}
if ( level.waypoints.size )
BotBuiltinPrintConsole( "Loaded " + level.waypoints.size + " waypoints from script." );
}
if ( !level.waypoints.size )
{
wps = loadmbotWps( mapname, "tdm" );
level.waypoints = wps;
if ( level.waypoints.size )
BotBuiltinPrintConsole( "Loaded mbot " + level.waypoints.size + " wps" );
}
if ( !level.waypoints.size )
{
BotBuiltinPrintConsole( "No waypoints loaded!" );
}
level.waypointCount = level.waypoints.size;
for ( i = 0; i < level.waypointCount; i++ )
{
if ( !isDefined( level.waypoints[i].children ) || !isDefined( level.waypoints[i].children.size ) )
level.waypoints[i].children = [];
if ( !isDefined( level.waypoints[i].origin ) )
level.waypoints[i].origin = ( 0, 0, 0 );
if ( !isDefined( level.waypoints[i].type ) )
level.waypoints[i].type = "crouch";
level.waypoints[i].childCount = undefined;
}
}
/*
Is bot near any of the given waypoints
*/
nearAnyOfWaypoints( dist, waypoints )
{
dist *= dist;
for ( i = 0; i < waypoints.size; i++ )
{
waypoint = level.waypoints[waypoints[i]];
if ( DistanceSquared( waypoint.origin, self.origin ) > dist )
continue;
return true;
}
return false;
}
/*
Returns the waypoints that are near
*/
waypointsNear( waypoints, dist )
{
dist *= dist;
answer = [];
for ( i = 0; i < waypoints.size; i++ )
{
wp = level.waypoints[waypoints[i]];
if ( DistanceSquared( wp.origin, self.origin ) > dist )
continue;
answer[answer.size] = waypoints[i];
}
return answer;
}
/*
Returns nearest waypoint of waypoints
*/
getNearestWaypointOfWaypoints( waypoints )
{
answer = undefined;
closestDist = 2147483647;
for ( i = 0; i < waypoints.size; i++ )
{
waypoint = level.waypoints[waypoints[i]];
thisDist = DistanceSquared( self.origin, waypoint.origin );
if ( isDefined( answer ) && thisDist > closestDist )
continue;
answer = waypoints[i];
closestDist = thisDist;
}
return answer;
}
/*
Returns all waypoints of type
*/
getWaypointsOfType( type )
{
answer = [];
for ( i = 0; i < level.waypointCount; i++ )
{
wp = level.waypoints[i];
if ( type == "camp" )
{
if ( wp.type != "crouch" )
continue;
if ( wp.children.size != 1 )
continue;
}
else if ( type != wp.type )
continue;
answer[answer.size] = i;
}
return answer;
}
/*
Returns the waypoint for index
*/
getWaypointForIndex( i )
{
if ( !isDefined( i ) )
return undefined;
return level.waypoints[i];
}
/*
Returns a good amount of players.
*/
getGoodMapAmount()
{
switch ( getCvar( "mapname" ) )
{
}
return 2;
}
/*
Returns the friendly user name for a given map's codename
*/
getMapName( map )
{
switch ( map )
{
}
return map;
}
/*
cod2
*/
waittill_any( string1, string2, string3, string4, string5 )
{
assert( isdefined( string1 ) );
if ( isdefined( string2 ) )
self endon( string2 );
if ( isdefined( string3 ) )
self endon( string3 );
if ( isdefined( string4 ) )
self endon( string4 );
if ( isdefined( string5 ) )
self endon( string5 );
self waittill( string1 );
}
/*
Does the extra check when adding bots
*/
doExtraCheck()
{
maps\mp\bots\_bot_internal::checkTheBots();
}
/*
Returns an array of all the bots in the game.
*/
getBotArray()
{
result = [];
playercount = level.players.size;
for ( i = 0; i < playercount; i++ )
{
player = level.players[i];
if ( !player is_bot() )
continue;
result[result.size] = player;
}
return result;
}
/*
We return a balanced KDTree from the waypoints.
*/
WaypointsToKDTree()
{
kdTree = KDTree();
kdTree _WaypointsToKDTree( level.waypoints, 0 );
return kdTree;
}
/*
Recurive function. We construct a balanced KD tree by sorting the waypoints using heap sort.
*/
_WaypointsToKDTree( waypoints, dem )
{
if ( !waypoints.size )
return;
callbacksort = undefined;
switch ( dem )
{
case 0:
callbacksort = ::HeapSortCoordX;
break;
case 1:
callbacksort = ::HeapSortCoordY;
break;
case 2:
callbacksort = ::HeapSortCoordZ;
break;
}
heap = NewHeap( callbacksort );
for ( i = 0; i < waypoints.size; i++ )
{
heap HeapInsert( waypoints[i] );
}
sorted = [];
while ( heap.data.size )
{
sorted[sorted.size] = heap.data[0];
heap HeapRemove();
}
median = int( sorted.size / 2 ); //use divide and conq
left = [];
right = [];
for ( i = 0; i < sorted.size; i++ )
if ( i < median )
right[right.size] = sorted[i];
else if ( i > median )
left[left.size] = sorted[i];
self KDTreeInsert( sorted[median] );
_WaypointsToKDTree( left, ( dem + 1 ) % 3 );
_WaypointsToKDTree( right, ( dem + 1 ) % 3 );
}
/*
Returns a new list.
*/
List()
{
list = spawnStruct();
list.count = 0;
list.data = [];
return list;
}
/*
Adds a new thing to the list.
*/
ListAdd( thing )
{
self.data[self.count] = thing;
self.count++;
}
/*
Adds to the start of the list.
*/
ListAddFirst( thing )
{
for ( i = self.count - 1; i >= 0; i-- )
{
self.data[i + 1] = self.data[i];
}
self.data[0] = thing;
self.count++;
}
/*
Removes the thing from the list.
*/
ListRemove( thing )
{
for ( i = 0; i < self.count; i++ )
{
if ( self.data[i] == thing )
{
while ( i < self.count - 1 )
{
self.data[i] = self.data[i + 1];
i++;
}
self.data[i] = undefined;
self.count--;
break;
}
}
}
/*
Returns a new KDTree.
*/
KDTree()
{
kdTree = spawnStruct();
kdTree.root = undefined;
kdTree.count = 0;
return kdTree;
}
/*
Called on a KDTree. Will insert the object into the KDTree.
*/
KDTreeInsert( data ) //as long as what you insert has a .origin attru, it will work.
{
self.root = self _KDTreeInsert( self.root, data, 0, -2147483647, -2147483647, -2147483647, 2147483647, 2147483647, 2147483647 );
}
/*
Recurive function that insert the object into the KDTree.
*/
_KDTreeInsert( node, data, dem, x0, y0, z0, x1, y1, z1 )
{
if ( !isDefined( node ) )
{
r = spawnStruct();
r.data = data;
r.left = undefined;
r.right = undefined;
r.x0 = x0;
r.x1 = x1;
r.y0 = y0;
r.y1 = y1;
r.z0 = z0;
r.z1 = z1;
self.count++;
return r;
}
switch ( dem )
{
case 0:
if ( data.origin[0] < node.data.origin[0] )
node.left = self _KDTreeInsert( node.left, data, 1, x0, y0, z0, node.data.origin[0], y1, z1 );
else
node.right = self _KDTreeInsert( node.right, data, 1, node.data.origin[0], y0, z0, x1, y1, z1 );
break;
case 1:
if ( data.origin[1] < node.data.origin[1] )
node.left = self _KDTreeInsert( node.left, data, 2, x0, y0, z0, x1, node.data.origin[1], z1 );
else
node.right = self _KDTreeInsert( node.right, data, 2, x0, node.data.origin[1], z0, x1, y1, z1 );
break;
case 2:
if ( data.origin[2] < node.data.origin[2] )
node.left = self _KDTreeInsert( node.left, data, 0, x0, y0, z0, x1, y1, node.data.origin[2] );
else
node.right = self _KDTreeInsert( node.right, data, 0, x0, y0, node.data.origin[2], x1, y1, z1 );
break;
}
return node;
}
/*
Called on a KDTree, will return the nearest object to the given origin.
*/
KDTreeNearest( origin )
{
if ( !isDefined( self.root ) )
return undefined;
return self _KDTreeNearest( self.root, origin, self.root.data, DistanceSquared( self.root.data.origin, origin ), 0 );
}
/*
Recurive function that will retrieve the closest object to the query.
*/
_KDTreeNearest( node, point, closest, closestdist, dem )
{
if ( !isDefined( node ) )
{
return closest;
}
thisDis = DistanceSquared( node.data.origin, point );
if ( thisDis < closestdist )
{
closestdist = thisDis;
closest = node.data;
}
if ( node RectDistanceSquared( point ) < closestdist )
{
near = node.left;
far = node.right;
if ( point[dem] > node.data.origin[dem] )
{
near = node.right;
far = node.left;
}
closest = self _KDTreeNearest( near, point, closest, closestdist, ( dem + 1 ) % 3 );
closest = self _KDTreeNearest( far, point, closest, DistanceSquared( closest.origin, point ), ( dem + 1 ) % 3 );
}
return closest;
}
/*
Called on a rectangle, returns the distance from origin to the rectangle.
*/
RectDistanceSquared( origin )
{
dx = 0;
dy = 0;
dz = 0;
if ( origin[0] < self.x0 )
dx = origin[0] - self.x0;
else if ( origin[0] > self.x1 )
dx = origin[0] - self.x1;
if ( origin[1] < self.y0 )
dy = origin[1] - self.y0;
else if ( origin[1] > self.y1 )
dy = origin[1] - self.y1;
if ( origin[2] < self.z0 )
dz = origin[2] - self.z0;
else if ( origin[2] > self.z1 )
dz = origin[2] - self.z1;
return dx * dx + dy * dy + dz * dz;
}
/*
A heap invarient comparitor, used for objects, objects with a higher X coord will be first in the heap.
*/
HeapSortCoordX( item, item2 )
{
return item.origin[0] > item2.origin[0];
}
/*
A heap invarient comparitor, used for objects, objects with a higher Y coord will be first in the heap.
*/
HeapSortCoordY( item, item2 )
{
return item.origin[1] > item2.origin[1];
}
/*
A heap invarient comparitor, used for objects, objects with a higher Z coord will be first in the heap.
*/
HeapSortCoordZ( item, item2 )
{
return item.origin[2] > item2.origin[2];
}
/*
A heap invarient comparitor, used for numbers, numbers with the highest number will be first in the heap.
*/
Heap( item, item2 )
{
return item > item2;
}
/*
A heap invarient comparitor, used for numbers, numbers with the lowest number will be first in the heap.
*/
ReverseHeap( item, item2 )
{
return item < item2;
}
/*
A heap invarient comparitor, used for traces. Wanting the trace with the largest length first in the heap.
*/
HeapTraceFraction( item, item2 )
{
return item["fraction"] > item2["fraction"];
}
/*
Returns a new heap.
*/
NewHeap( compare )
{
heap_node = spawnStruct();
heap_node.data = [];
heap_node.compare = compare;
return heap_node;
}
/*
Inserts the item into the heap. Called on a heap.
*/
HeapInsert( item )
{
insert = self.data.size;
self.data[insert] = item;
current = insert + 1;
while ( current > 1 )
{
last = current;
current = int( current / 2 );
if ( ![[self.compare]]( item, self.data[current - 1] ) )
break;
self.data[last - 1] = self.data[current - 1];
self.data[current - 1] = item;
}
}
/*
Helper function to determine what is the next child of the bst.
*/
_HeapNextChild( node, hsize )
{
left = node * 2;
right = left + 1;
if ( left > hsize )
return -1;
if ( right > hsize )
return left;
if ( [[self.compare]]( self.data[left - 1], self.data[right - 1] ) )
return left;
else
return right;
}
/*
Removes an item from the heap. Called on a heap.
*/
HeapRemove()
{
remove = self.data.size;
if ( !remove )
return remove;
move = self.data[remove - 1];
self.data[0] = move;
self.data[remove - 1] = undefined;
remove--;
if ( !remove )
return remove;
last = 1;
next = self _HeapNextChild( 1, remove );
while ( next != -1 )
{
if ( [[self.compare]]( move, self.data[next - 1] ) )
break;
self.data[last - 1] = self.data[next - 1];
self.data[next - 1] = move;
last = next;
next = self _HeapNextChild( next, remove );
}
return remove;
}
/*
A heap invarient comparitor, used for the astar's nodes, wanting the node with the lowest f to be first in the heap.
*/
ReverseHeapAStar( item, item2 )
{
return item.f < item2.f;
}
/*
Removes the waypoint usage
*/
RemoveWaypointUsage( wp, team )
{
if ( !isDefined( level.waypointUsage ) )
return;
if ( !isDefined( level.waypointUsage[team][wp + ""] ) )
return;
level.waypointUsage[team][wp + ""]--;
if ( level.waypointUsage[team][wp + ""] <= 0 )
level.waypointUsage[team][wp + ""] = undefined;
}
/*
Will linearly search for the nearest waypoint to pos that has a direct line of sight.
*/
GetNearestWaypointWithSight( pos )
{
candidate = undefined;
dist = 2147483647;
for ( i = 0; i < level.waypointCount; i++ )
{
if ( !bulletTracePassed( pos + ( 0, 0, 15 ), level.waypoints[i].origin + ( 0, 0, 15 ), false, undefined ) )
continue;
curdis = DistanceSquared( level.waypoints[i].origin, pos );
if ( curdis > dist )
continue;
dist = curdis;
candidate = i;
}
return candidate;
}
/*
Will linearly search for the nearest waypoint
*/
GetNearestWaypoint( pos )
{
candidate = undefined;
dist = 2147483647;
for ( i = 0; i < level.waypointCount; i++ )
{
curdis = DistanceSquared( level.waypoints[i].origin, pos );
if ( curdis > dist )
continue;
dist = curdis;
candidate = i;
}
return candidate;
}
/*
Modified Pezbot astar search.
This makes use of sets for quick look up and a heap for a priority queue instead of simple lists which require to linearly search for elements everytime.
It is also modified to make paths with bots already on more expensive and will try a less congested path first. Thus spliting up the bots onto more paths instead of just one (the smallest).
*/
AStarSearch( start, goal, team, greedy_path )
{
open = NewHeap( ::ReverseHeapAStar ); //heap
openset = [];//set for quick lookup
closed = [];//set for quick lookup
startWp = getNearestWaypoint( start );
if ( !isDefined( startWp ) )
return [];
_startwp = undefined;
if ( !bulletTracePassed( start + ( 0, 0, 15 ), level.waypoints[startWp].origin + ( 0, 0, 15 ), false, undefined ) )
_startwp = GetNearestWaypointWithSight( start );
if ( isDefined( _startwp ) )
startWp = _startwp;
goalWp = getNearestWaypoint( goal );
if ( !isDefined( goalWp ) )
return [];
_goalWp = undefined;
if ( !bulletTracePassed( goal + ( 0, 0, 15 ), level.waypoints[goalWp].origin + ( 0, 0, 15 ), false, undefined ) )
_goalwp = GetNearestWaypointWithSight( goal );
if ( isDefined( _goalwp ) )
goalWp = _goalwp;
node = spawnStruct();
node.g = 0; //path dist so far
node.h = DistanceSquared( level.waypoints[startWp].origin, level.waypoints[goalWp].origin ); //herustic, distance to goal for path finding
node.f = node.h + node.g; // combine path dist and heru, use reverse heap to sort the priority queue by this attru
node.index = startWp;
node.parent = undefined; //we are start, so we have no parent
//push node onto queue
openset[node.index + ""] = node;
open HeapInsert( node );
//while the queue is not empty
while ( open.data.size )
{
//pop bestnode from queue
bestNode = open.data[0];
open HeapRemove();
openset[bestNode.index + ""] = undefined;
wp = level.waypoints[bestNode.index];
//check if we made it to the goal
if ( bestNode.index == goalWp )
{
path = [];
while ( isDefined( bestNode ) )
{
if ( isdefined( team ) && isDefined( level.waypointUsage ) )
{
if ( !isDefined( level.waypointUsage[team][bestNode.index + ""] ) )
level.waypointUsage[team][bestNode.index + ""] = 0;
level.waypointUsage[team][bestNode.index + ""]++;
}
//construct path
path[path.size] = bestNode.index;
bestNode = bestNode.parent;
}
return path;
}
//for each child of bestnode
for ( i = wp.children.size - 1; i >= 0; i-- )
{
child = wp.children[i];
childWp = level.waypoints[child];
penalty = 1;
if ( !greedy_path && isdefined( team ) && isDefined( level.waypointUsage ) )
{
temppen = 1;
if ( isDefined( level.waypointUsage[team][child + ""] ) )
temppen = level.waypointUsage[team][child + ""]; //consider how many bots are taking this path
if ( temppen > 1 )
penalty = temppen;
}
// have certain types of nodes more expensive
if ( childWp.type == "climb" || childWp.type == "prone" )
penalty += 4;
//calc the total path we have took
newg = bestNode.g + DistanceSquared( wp.origin, childWp.origin ) * penalty; //bots on same team's path are more expensive
//check if this child is in open or close with a g value less than newg
inopen = isDefined( openset[child + ""] );
if ( inopen && openset[child + ""].g <= newg )
continue;
inclosed = isDefined( closed[child + ""] );
if ( inclosed && closed[child + ""].g <= newg )
continue;
node = undefined;
if ( inopen )
node = openset[child + ""];
else if ( inclosed )
node = closed[child + ""];
else
node = spawnStruct();
node.parent = bestNode;
node.g = newg;
node.h = DistanceSquared( childWp.origin, level.waypoints[goalWp].origin );
node.f = node.g + node.h;
node.index = child;
//check if in closed, remove it
if ( inclosed )
closed[child + ""] = undefined;
//check if not in open, add it
if ( !inopen )
{
open HeapInsert( node );
openset[child + ""] = node;
}
}
//done with children, push onto closed
closed[bestNode.index + ""] = bestNode;
}
return [];
}
/*
Taken from t5 gsc.
Returns an array of number's average.
*/
array_average( array )
{
assert( array.size > 0 );
total = 0;
for ( i = 0; i < array.size; i++ )
{
total += array[i];
}
return ( total / array.size );
}
/*
Taken from t5 gsc.
Returns an array of number's standard deviation.
*/
array_std_deviation( array, mean )
{
assert( array.size > 0 );
tmp = [];
for ( i = 0; i < array.size; i++ )
{
tmp[i] = ( array[i] - mean ) * ( array[i] - mean );
}
total = 0;
for ( i = 0; i < tmp.size; i++ )
{
total = total + tmp[i];
}
return Sqrt( total / array.size );
}
/*
Taken from t5 gsc.
Will produce a random number between lower_bound and upper_bound but with a bell curve distribution (more likely to be close to the mean).
*/
random_normal_distribution( mean, std_deviation, lower_bound, upper_bound )
{
x1 = 0;
x2 = 0;
w = 1;
y1 = 0;
while ( w >= 1 )
{
x1 = 2 * RandomFloatRange( 0, 1 ) - 1;
x2 = 2 * RandomFloatRange( 0, 1 ) - 1;
w = x1 * x1 + x2 * x2;
}
w = Sqrt( ( -2.0 * Log( w ) ) / w );
y1 = x1 * w;
number = mean + y1 * std_deviation;
if ( IsDefined( lower_bound ) && number < lower_bound )
{
number = lower_bound;
}
if ( IsDefined( upper_bound ) && number > upper_bound )
{
number = upper_bound;
}
return ( number );
}
/*
Returns the natural log of x using harmonic series.
*/
Log( x )
{
/* if (!isDefined(level.log_cache))
level.log_cache = [];
key = x + "";
if (isDefined(level.log_cache[key]))
return level.log_cache[key];*/
//thanks Bob__ at stackoverflow
old_sum = 0.0;
xmlxpl = ( x - 1 ) / ( x + 1 );
xmlxpl_2 = xmlxpl * xmlxpl;
denom = 1.0;
frac = xmlxpl;
sum = frac;
while ( sum != old_sum )
{
old_sum = sum;
denom += 2.0;
frac *= xmlxpl_2;
sum += frac / denom;
}
answer = 2.0 * sum;
//level.log_cache[key] = answer;
return answer;
}