Reimplement basic RGBGFX features in C++

Currently missing from the old version:
- `-f` ("fixing" the input image to be indexed)
- `-m` (the code for detecting mirrored tiles is missing, but all of the
        "plumbing" is otherwise there)
- `-C`
- `-d`
- `-x` (though I need to check the exact functionality the old one has)
- Also the man page is still a draft and needs to be fleshed out

More planned features are not implemented yet either:
- Explicit palette spec
- Better error messages, also error "images"
- Better 8x16 support, as well as other "dedup unit" sizes
- Support for arbitrary number of palettes & colors per palette
- Other output formats (for example, a "full" palette map for "streaming"
  use cases like gb-open-world)
- Quantization?

Some things may also be bugged:
- Transparency support
- Tile offsets (not exposed yet)
- Tile counts per bank (not exposed yet)

...and performance remains to be checked.
We need to set up some tests, honestly.
This commit is contained in:
ISSOtm
2022-02-06 23:30:37 +01:00
committed by Eldred Habert
parent 34bc650341
commit 8c62e80c18
23 changed files with 2022 additions and 1696 deletions

869
src/gfx/convert.cpp Normal file
View File

@@ -0,0 +1,869 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2022, Eldred Habert and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include "gfx/convert.hpp"
#include <algorithm>
#include <assert.h>
#include <errno.h>
#include <fstream>
#include <inttypes.h>
#include <memory>
#include <optional>
#include <png.h>
#include <setjmp.h>
#include <string.h>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <vector>
#include "defaultinitalloc.hpp"
#include "helpers.h"
#include "gfx/main.hpp"
#include "gfx/pal_packing.hpp"
#include "gfx/pal_sorting.hpp"
#include "gfx/proto_palette.hpp"
struct Rgba {
uint8_t red;
uint8_t green;
uint8_t blue;
uint8_t alpha;
Rgba(uint8_t r, uint8_t g, uint8_t b, uint8_t a) : red(r), green(g), blue(b), alpha(a) {}
Rgba(uint32_t rgba) : red(rgba), green(rgba >> 8), blue(rgba >> 16), alpha(rgba >> 24) {}
operator uint32_t() const {
auto shl = [](uint8_t val, unsigned shift) { return static_cast<uint32_t>(val) << shift; };
return shl(red, 0) | shl(green, 8) | shl(blue, 16) | shl(alpha, 24);
}
bool operator!=(Rgba const &other) const {
return static_cast<uint32_t>(*this) != static_cast<uint32_t>(other);
}
bool isGray() const { return red == green && green == blue; }
/**
* CGB colors are RGB555, so we use bit 15 to signify that the color is transparent instead
* Since the rest of the bits don't matter then, we return 0x8000 exactly.
*/
static constexpr uint16_t transparent = 0b1'00000'00000'00000;
static constexpr uint8_t transparency_threshold = 5; // TODO: adjust this
/**
* Computes the equivalent CGB color, respects the color curve depending on options
*/
uint16_t cgbColor() const {
if (alpha < transparency_threshold)
return transparent;
if (options.useColorCurve) {
assert(!"TODO");
} else {
return (red >> 3) | (green >> 3) << 5 | (blue >> 3) << 10;
}
}
};
class ImagePalette {
// Use as many slots as there are CGB colors (plus transparency)
std::array<std::optional<Rgba>, 0x8001> _colors;
public:
ImagePalette() = default;
void registerColor(Rgba const &rgba) {
decltype(_colors)::value_type &slot = _colors[rgba.cgbColor()];
if (!slot.has_value()) {
slot.emplace(rgba);
} else if (*slot != rgba) {
warning("Different colors melded together"); // TODO: indicate position
}
}
size_t size() const { return _colors.size(); }
auto begin() const { return _colors.begin(); }
auto end() const { return _colors.end(); }
};
class Png {
std::filesystem::path const &path;
std::filebuf file{};
png_structp png = nullptr;
png_infop info = nullptr;
// These are cached for speed
uint32_t width, height;
DefaultInitVec<uint16_t> pixels;
ImagePalette colors;
int colorType;
int nbColors;
png_colorp embeddedPal = nullptr;
png_bytep transparencyPal = nullptr;
bool isGrayOnly = true;
[[noreturn]] static void handleError(png_structp png, char const *msg) {
struct Png *self = reinterpret_cast<Png *>(png_get_error_ptr(png));
fatal("Error reading input image (\"%s\"): %s", self->path.c_str(), msg);
}
static void handleWarning(png_structp png, char const *msg) {
struct Png *self = reinterpret_cast<Png *>(png_get_error_ptr(png));
warning("In input image (\"%s\"): %s", self->path.c_str(), msg);
}
static void readData(png_structp png, png_bytep data, size_t length) {
struct Png *self = reinterpret_cast<Png *>(png_get_io_ptr(png));
std::streamsize expectedLen = length;
std::streamsize nbBytesRead = self->file.sgetn(reinterpret_cast<char *>(data), expectedLen);
if (nbBytesRead != expectedLen) {
fatal("Error reading input image (\"%s\"): file too short (expected at least %zd more "
"bytes after reading %lld)",
self->path.c_str(), length - nbBytesRead,
self->file.pubseekoff(0, std::ios_base::cur));
}
}
public:
ImagePalette const &getColors() const { return colors; }
int getColorType() const { return colorType; }
std::tuple<int, png_const_colorp, png_bytep> getEmbeddedPal() const {
return {nbColors, embeddedPal, transparencyPal};
}
uint32_t getWidth() const { return width; }
uint32_t getHeight() const { return height; }
uint16_t &pixel(uint32_t x, uint32_t y) { return pixels[y * width + x]; }
uint16_t const &pixel(uint32_t x, uint32_t y) const { return pixels[y * width + x]; }
bool hasNonGray() const { return !isGrayOnly; }
/**
* Reads a PNG and notes all of its colors
*
* This code is more complicated than strictly necessary, but that's because of the API
* being used: the "high-level" interface doesn't provide all the transformations we need,
* so we use the "lower-level" one instead.
* We also use that occasion to only read the PNG one line at a time, since we store all of
* the pixel data in `pixels`, which saves on memory allocations.
*/
explicit Png(std::filesystem::path const &filePath) : path(filePath), colors() {
if (file.open(path, std::ios_base::in | std::ios_base::binary) == nullptr) {
fatal("Failed to open input image (\"%s\"): %s", path.c_str(), strerror(errno));
}
options.verbosePrint("Opened input file\n");
std::array<unsigned char, 8> pngHeader;
if (file.sgetn(reinterpret_cast<char *>(pngHeader.data()), pngHeader.size())
!= static_cast<std::streamsize>(pngHeader.size()) // Not enough bytes?
|| png_sig_cmp(pngHeader.data(), 0, pngHeader.size()) != 0) {
fatal("Input file (\"%s\") is not a PNG image!", path.c_str());
}
options.verbosePrint("PNG header signature is OK\n");
png = png_create_read_struct(PNG_LIBPNG_VER_STRING, (png_voidp)this, handleError,
handleWarning);
if (!png) {
fatal("Failed to allocate PNG structure: %s", strerror(errno));
}
info = png_create_info_struct(png);
if (!info) {
png_destroy_read_struct(&png, nullptr, nullptr);
fatal("Failed to allocate PNG info structure: %s", strerror(errno));
}
png_set_read_fn(png, this, readData);
png_set_sig_bytes(png, pngHeader.size());
// TODO: png_set_crc_action(png, PNG_CRC_ERROR_QUIT, PNG_CRC_WARN_DISCARD);
// Skipping chunks we don't use should improve performance
// TODO: png_set_keep_unknown_chunks(png, ...);
// Process all chunks up to but not including the image data
png_read_info(png, info);
int bitDepth, interlaceType; //, compressionType, filterMethod;
png_get_IHDR(png, info, &width, &height, &bitDepth, &colorType, &interlaceType, nullptr,
nullptr);
if (width % 8 != 0)
fatal("Image width (%" PRIu32 " pixels) is not a multiple of 8!", width);
if (height % 8 != 0)
fatal("Image height (%" PRIu32 " pixels) is not a multiple of 8!", height);
// TODO: use an allocator that doesn't zero on init to save potentially a lot of perf
// https://stackoverflow.com/questions/21028299/is-this-behavior-of-vectorresizesize-type-n-under-c11-and-boost-container/21028912#21028912
pixels.resize(static_cast<size_t>(width) * static_cast<size_t>(height));
auto colorTypeName = [this]() {
switch (colorType) {
case PNG_COLOR_TYPE_GRAY:
return "grayscale";
case PNG_COLOR_TYPE_GRAY_ALPHA:
return "grayscale + alpha";
case PNG_COLOR_TYPE_PALETTE:
return "palette";
case PNG_COLOR_TYPE_RGB:
return "RGB";
case PNG_COLOR_TYPE_RGB_ALPHA:
return "RGB + alpha";
default:
fatal("Unknown color type %d", colorType);
}
};
auto interlaceTypeName = [&interlaceType]() {
switch (interlaceType) {
case PNG_INTERLACE_NONE:
return "not interlaced";
case PNG_INTERLACE_ADAM7:
return "interlaced (Adam7)";
default:
fatal("Unknown interlace type %d", interlaceType);
}
};
options.verbosePrint("Input image: %" PRIu32 "x%" PRIu32 " pixels, %dbpp %s, %s\n", height,
width, bitDepth, colorTypeName(), interlaceTypeName());
if (png_get_PLTE(png, info, &embeddedPal, &nbColors) != 0) {
int nbTransparentEntries;
if (png_get_tRNS(png, info, &transparencyPal, &nbTransparentEntries, nullptr)) {
assert(nbTransparentEntries == nbColors);
}
options.verbosePrint("Embedded palette has %d colors: [", nbColors);
for (int i = 0; i < nbColors; ++i) {
auto const &color = embeddedPal[i];
options.verbosePrint("#%02x%02x%02x%s", color.red, color.green, color.blue,
i != nbColors - 1 ? ", " : "]\n");
}
} else {
options.verbosePrint("No embedded palette\n");
}
// Set up transformations; to turn everything into RGBA888
// TODO: it's not necessary to uniformize the pixel data (in theory), and not doing
// so *might* improve performance, and should reduce memory usage.
// Convert grayscale to RGB
switch (colorType & ~PNG_COLOR_MASK_ALPHA) {
case PNG_COLOR_TYPE_GRAY:
png_set_gray_to_rgb(png); // This also converts tRNS to alpha
break;
case PNG_COLOR_TYPE_PALETTE:
png_set_palette_to_rgb(png);
break;
}
// If we read a tRNS chunk, convert it to alpha
if (png_get_valid(png, info, PNG_INFO_tRNS))
png_set_tRNS_to_alpha(png);
// Otherwise, if we lack an alpha channel, default to full opacity
else if (!(colorType & PNG_COLOR_MASK_ALPHA))
png_set_add_alpha(png, 0xFFFF, PNG_FILLER_AFTER);
// Scale 16bpp back to 8 (we don't need all of that precision anyway)
if (bitDepth == 16)
png_set_scale_16(png);
else if (bitDepth < 8)
png_set_packing(png);
// Set interlace handling (MUST be done before `png_read_update_info`)
int nbPasses = png_set_interlace_handling(png);
// Update `info` with the transformations
png_read_update_info(png, info);
// These shouldn't have changed
assert(png_get_image_width(png, info) == width);
assert(png_get_image_height(png, info) == height);
// These should have changed, however
assert(png_get_color_type(png, info) == PNG_COLOR_TYPE_RGBA);
assert(png_get_bit_depth(png, info) == 8);
// Now that metadata has been read, we can process the image data
std::vector<png_byte> row(png_get_rowbytes(png, info));
if (interlaceType == PNG_INTERLACE_NONE) {
for (png_uint_32 y = 0; y < height; ++y) {
png_read_row(png, row.data(), nullptr);
for (png_uint_32 x = 0; x < width; ++x) {
Rgba rgba(row[x * 4], row[x * 4 + 1], row[x * 4 + 2], row[x * 4 + 3]);
colors.registerColor(rgba);
pixel(x, y) = rgba.cgbColor();
isGrayOnly &= rgba.isGray();
}
}
} else {
// For interlace to work properly, we must read the image `nbPasses` times
for (int pass = 0; pass < nbPasses; ++pass) {
// The interlacing pass must be skipped if its width or height is reported as zero
if (PNG_PASS_COLS(width, pass) == 0 || PNG_PASS_ROWS(height, pass) == 0) {
continue;
}
png_uint_32 xStep = 1u << PNG_PASS_COL_SHIFT(pass);
png_uint_32 yStep = 1u << PNG_PASS_ROW_SHIFT(pass);
for (png_uint_32 y = PNG_PASS_START_ROW(pass); y < height; y += yStep) {
png_bytep ptr = row.data();
png_read_row(png, ptr, nullptr);
for (png_uint_32 x = PNG_PASS_START_COL(pass); x < width; x += xStep) {
Rgba rgba(ptr[0], ptr[1], ptr[2], ptr[3]);
colors.registerColor(rgba);
pixel(x, y) = rgba.cgbColor();
isGrayOnly &= rgba.isGray();
ptr += 4;
}
}
}
}
png_read_end(png,
nullptr); // We don't care about chunks after the image data (comments, etc.)
}
~Png() { png_destroy_read_struct(&png, &info, nullptr); }
class TilesVisitor {
Png const &_png;
bool const _columnMajor;
uint32_t const _width, _height;
uint32_t const _limit = _columnMajor ? _height : _width;
public:
TilesVisitor(Png const &png, bool columnMajor, uint32_t width, uint32_t height)
: _png(png), _columnMajor(columnMajor), _width(width), _height(height) {}
class Tile {
Png const &_png;
uint32_t const _x, _y;
public:
Tile(Png const &png, uint32_t x, uint32_t y) : _png(png), _x(x), _y(y) {}
uint16_t pixel(uint32_t xOfs, uint32_t yOfs) const {
return _png.pixel(_x + xOfs, _y + yOfs);
}
};
private:
struct iterator {
TilesVisitor const &parent;
uint32_t const limit;
uint32_t x, y;
public:
std::pair<uint32_t, uint32_t> coords() const { return {x, y}; }
Tile operator*() const { return {parent._png, x, y}; }
iterator &operator++() {
auto [major, minor] = parent._columnMajor ? std::tie(y, x) : std::tie(x, y);
major += 8;
if (major == limit) {
minor += 8;
major = 0;
}
return *this;
}
bool operator!=(iterator const &rhs) const {
return coords() != rhs.coords(); // Compare the returned coord pairs
}
};
public:
iterator begin() const { return {*this, _width, 0, 0}; }
iterator end() const {
iterator it{*this, _width, _width - 8, _height - 8}; // Last valid one
return ++it; // Now one-past-last
}
};
public:
TilesVisitor visitAsTiles(bool columnMajor) const {
return {*this, columnMajor, width, height};
}
};
class RawTiles {
public:
/**
* A tile which only contains indices into the image's global palette
*/
class RawTile {
std::array<std::array<size_t, 8>, 8> _pixelIndices{};
public:
// Not super clean, but it's closer to matrix notation
size_t &operator()(size_t x, size_t y) { return _pixelIndices[y][x]; }
};
private:
std::vector<RawTile> _tiles;
public:
/**
* Creates a new raw tile, and returns a reference to it so it can be filled in
*/
RawTile &newTile() {
_tiles.emplace_back();
return _tiles.back();
}
};
struct AttrmapEntry {
size_t protoPaletteID;
uint16_t tileID;
bool yFlip;
bool xFlip;
};
static void outputPalettes(std::vector<Palette> const &palettes) {
std::filebuf output;
output.open(options.palettes, std::ios_base::out | std::ios_base::binary);
for (Palette const &palette : palettes) {
for (uint16_t color : palette) {
output.sputc(color & 0xFF);
output.sputc(color >> 8);
}
}
}
namespace unoptimized {
// TODO: this is very redundant with `TileData`; try merging both?
static void outputTileData(Png const &png, DefaultInitVec<AttrmapEntry> const &attrmap,
std::vector<Palette> const &palettes,
DefaultInitVec<size_t> const &mappings) {
std::filebuf output;
output.open(options.tilemap, std::ios_base::out | std::ios_base::binary);
auto iter = attrmap.begin();
for (auto tile : png.visitAsTiles(options.columnMajor)) {
Palette const &palette = palettes[mappings[iter->protoPaletteID]];
for (uint32_t y = 0; y < 8; ++y) {
uint16_t row = 0;
for (uint32_t x = 0; x < 8; ++x) {
row <<= 1;
uint8_t index = palette.indexOf(tile.pixel(x, y));
if (index & 1) {
row |= 0x001;
}
if (index & 2) {
row |= 0x100;
}
}
output.sputc(row & 0xFF);
output.sputc(row >> 8);
}
++iter;
}
assert(iter == attrmap.end());
}
static void outputMaps(Png const &png, DefaultInitVec<AttrmapEntry> const &attrmap,
DefaultInitVec<size_t> const &mappings) {
std::optional<std::filebuf> tilemapOutput, attrmapOutput;
if (!options.tilemap.empty()) {
tilemapOutput.emplace();
tilemapOutput->open(options.tilemap, std::ios_base::out | std::ios_base::binary);
}
if (!options.attrmap.empty()) {
attrmapOutput.emplace();
attrmapOutput->open(options.attrmap, std::ios_base::out | std::ios_base::binary);
}
uint8_t tileID = 0;
uint8_t bank = 0;
auto iter = attrmap.begin();
for ([[maybe_unused]] auto tile : png.visitAsTiles(options.columnMajor)) {
if (tileID == options.maxNbTiles[bank]) {
assert(bank == 0);
bank = 1;
tileID = 0;
}
if (tilemapOutput.has_value()) {
tilemapOutput->sputc(tileID + options.baseTileIDs[bank]);
}
if (attrmapOutput.has_value()) {
uint8_t palID = mappings[iter->protoPaletteID] & 7;
attrmapOutput->sputc(palID | bank << 3); // The other flags are all 0
++iter;
}
++tileID;
}
}
} // namespace unoptimized
static uint8_t flip(uint8_t byte) {
// To flip all the bits, we'll flip both nibbles, then each nibble half, etc.
byte = (byte & 0x0F) << 4 | (byte & 0xF0) >> 4;
byte = (byte & 0x33) << 2 | (byte & 0xCC) >> 2;
byte = (byte & 0x55) << 1 | (byte & 0xAA) >> 1;
return byte;
}
class TileData {
// TODO: might want to switch to `std::byte` instead?
std::array<uint8_t, 16> _data;
// The hash is a bit lax: it's the XOR of all lines, and every other nibble is identical
// if horizontal mirroring is in effect. It should still be a reasonable tie-breaker in
// non-pathological cases.
uint16_t _hash;
public:
mutable size_t tileID;
TileData(Png::TilesVisitor::Tile const &tile, Palette const &palette) : _hash(0) {
for (uint32_t y = 0; y < 8; ++y) {
uint16_t bitplanes = 0;
for (uint32_t x = 0; x < 8; ++x) {
bitplanes <<= 1;
uint8_t index = palette.indexOf(tile.pixel(x, y));
if (index & 1) {
bitplanes |= 1;
}
if (index & 2) {
bitplanes |= 0x100;
}
}
_data[y * 2] = bitplanes & 0xFF;
_data[y * 2 + 1] = bitplanes >> 8;
// Update the hash
_hash ^= bitplanes;
if (options.allowMirroring) {
// Count the line itself as mirrorred; vertical mirroring is
// already taken care of because the symmetric line will be XOR'd
// the same way. (...which is a problem, but probably benign.)
_hash ^= flip(bitplanes >> 8) << 8 | flip(bitplanes & 0xFF);
}
}
}
auto const &data() const { return _data; }
uint16_t hash() const { return _hash; }
enum MatchType {
NOPE,
EXACT,
HFLIP,
VFLIP,
VHFLIP,
};
MatchType tryMatching(TileData const &other) const {
if (std::equal(_data.begin(), _data.end(), other._data.begin()))
return MatchType::EXACT;
if (options.allowMirroring) {
// TODO
}
return MatchType::NOPE;
}
friend bool operator==(TileData const &lhs, TileData const &rhs) {
return lhs.tryMatching(rhs) != MatchType::NOPE;
}
};
template<>
struct std::hash<TileData> {
std::size_t operator()(TileData const &tile) const { return tile.hash(); }
};
namespace optimized {
struct UniqueTiles {
std::unordered_set<TileData> tileset;
std::vector<TileData const *> tiles;
UniqueTiles() = default;
// Copies are likely to break pointers, so we really don't want those.
// Copy elision should be relied on to be more sure that refs won't be invalidated, too!
UniqueTiles(UniqueTiles const &) = delete;
UniqueTiles(UniqueTiles &&) = default;
/**
* Adds a tile to the collection, and returns its ID
*/
std::tuple<uint16_t, TileData::MatchType> addTile(Png::TilesVisitor::Tile const &tile,
Palette const &palette) {
TileData newTile(tile, palette);
auto [tileData, inserted] = tileset.insert(newTile);
TileData::MatchType matchType = TileData::EXACT;
if (inserted) {
// Give the new tile the next available unique ID
tileData->tileID = tiles.size();
// Pointers are never invalidated!
tiles.emplace_back(&*tileData);
} else {
matchType = tileData->tryMatching(newTile);
}
return {tileData->tileID, matchType};
}
auto size() const { return tiles.size(); }
auto begin() const { return tiles.begin(); }
auto end() const { return tiles.end(); }
};
static UniqueTiles dedupTiles(Png const &png, DefaultInitVec<AttrmapEntry> &attrmap,
std::vector<Palette> const &palettes,
DefaultInitVec<size_t> const &mappings) {
// Iterate throughout the image, generating tile data as we go
// (We don't need the full tile data to be able to dedup tiles, but we don't lose anything
// by caching the full tile data anyway, so we might as well.)
UniqueTiles tiles;
auto iter = attrmap.begin();
for (auto tile : png.visitAsTiles(options.columnMajor)) {
auto [tileID, matchType] = tiles.addTile(tile, palettes[mappings[iter->protoPaletteID]]);
iter->xFlip = matchType == TileData::HFLIP || matchType == TileData::VHFLIP;
iter->yFlip = matchType == TileData::VFLIP || matchType == TileData::VHFLIP;
assert(tileID < 1 << 10);
iter->tileID = tileID;
++iter;
}
assert(iter == attrmap.end());
return tiles; // Copy elision should prevent the contained `unordered_set` from being
// re-constructed
}
static void outputTileData(UniqueTiles const &tiles) {
std::filebuf output;
output.open(options.output, std::ios_base::out | std::ios_base::binary);
uint16_t tileID = 0;
for (TileData const *tile : tiles) {
assert(tile->tileID == tileID);
++tileID;
output.sputn(reinterpret_cast<char const *>(tile->data().data()), tile->data().size());
}
}
static void outputTilemap(DefaultInitVec<AttrmapEntry> const &attrmap) {
std::filebuf output;
output.open(options.tilemap, std::ios_base::out | std::ios_base::binary);
assert(options.baseTileIDs[0] == 0 && options.baseTileIDs[1] == 0); // TODO: deal with offset
for (AttrmapEntry const &entry : attrmap) {
output.sputc(entry.tileID & 0xFF);
}
}
static void outputAttrmap(DefaultInitVec<AttrmapEntry> const &attrmap,
DefaultInitVec<size_t> const &mappings) {
std::filebuf output;
output.open(options.attrmap, std::ios_base::out | std::ios_base::binary);
assert(options.baseTileIDs[0] == 0 && options.baseTileIDs[1] == 0); // TODO: deal with offset
for (AttrmapEntry const &entry : attrmap) {
uint8_t attr = entry.xFlip << 5 | entry.yFlip << 6;
attr |= (entry.tileID >= options.maxNbTiles[0]) << 3;
attr |= mappings[entry.protoPaletteID] & 7;
output.sputc(attr);
}
}
} // namespace optimized
void process() {
options.verbosePrint("Using libpng %s\n", png_get_libpng_ver(nullptr));
options.verbosePrint("Reading tiles...\n");
Png png(options.input);
ImagePalette const &colors = png.getColors();
// Now, we have all the image's colors in `colors`
// The next step is to order the palette
if (options.beVerbose) {
options.verbosePrint("Image colors: [ ");
size_t i = 0;
for (auto const &slot : colors) {
if (!slot.has_value()) {
continue;
}
options.verbosePrint("#%02x%02x%02x%02x%s", slot->red, slot->green, slot->blue,
slot->alpha, i != colors.size() - 1 ? ", " : "");
++i;
}
options.verbosePrint("]\n");
}
// Now, iterate through the tiles, generating proto-palettes as we go
// We do this unconditionally because this performs the image validation (which we want to
// perform even if no output is requested), and because it's necessary to generate any
// output (with the exception of an un-duplicated tilemap, but that's an acceptable loss.)
std::vector<ProtoPalette> protoPalettes;
DefaultInitVec<AttrmapEntry> attrmap{};
for (auto tile : png.visitAsTiles(options.columnMajor)) {
ProtoPalette tileColors;
AttrmapEntry &attrs = attrmap.emplace_back();
for (uint32_t y = 0; y < 8; ++y) {
for (uint32_t x = 0; x < 8; ++x) {
tileColors.add(tile.pixel(x, y));
}
}
// Insert the palette, making sure to avoid overlaps
// TODO: if inserting (0, 1), (0, 2), and then (0, 1, 2), we might have a problem!
for (size_t i = 0; i < protoPalettes.size(); ++i) {
switch (tileColors.compare(protoPalettes[i])) {
case ProtoPalette::WE_BIGGER:
protoPalettes[i] = tileColors; // Override them
[[fallthrough]];
case ProtoPalette::THEY_BIGGER:
// Do nothing, they already contain us
attrs.protoPaletteID = i;
goto contained;
case ProtoPalette::NEITHER:
break; // Keep going
}
}
attrs.protoPaletteID = protoPalettes.size();
protoPalettes.push_back(tileColors);
contained:;
}
options.verbosePrint("Image contains %zu proto-palette%s\n", protoPalettes.size(),
protoPalettes.size() != 1 ? "s" : "");
// Sort the proto-palettes by size, which improves the packing algorithm's efficiency
// TODO: try keeping the palettes stored while inserting them instead, might perform better
std::sort(
protoPalettes.begin(), protoPalettes.end(),
[](ProtoPalette const &lhs, ProtoPalette const &rhs) { return lhs.size() < rhs.size(); });
// Run a "pagination" problem solver
// TODO: allow picking one of several solvers?
auto [mappings, nbPalettes] = packing::overloadAndRemove(protoPalettes);
assert(mappings.size() == protoPalettes.size());
if (options.beVerbose) {
options.verbosePrint("Proto-palette mappings: (%zu palettes)\n", nbPalettes);
for (size_t i = 0; i < mappings.size(); ++i) {
options.verbosePrint("%zu -> %zu\n", i, mappings[i]);
}
}
// TODO: optionally, "decant" the result
// Generate the actual palettes from the mappings
std::vector<Palette> palettes(nbPalettes);
for (size_t protoPalID = 0; protoPalID < mappings.size(); ++protoPalID) {
auto &pal = palettes[mappings[protoPalID]];
for (uint16_t color : protoPalettes[protoPalID]) {
pal.addColor(color);
}
}
// "Sort" colors in the generated palettes, see the man page for the flowchart
auto [palSize, palRGB, palAlpha] = png.getEmbeddedPal();
if (palRGB) {
sorting::indexed(palettes, palSize, palRGB, palAlpha);
} else if (png.hasNonGray()) {
sorting::rgb(palettes);
} else {
sorting::grayscale(palettes);
}
if (options.beVerbose) {
for (auto &&palette : palettes) {
options.verbosePrint("{ ");
for (uint16_t colorIndex : palette) {
options.verbosePrint("%04" PRIx16 ", ", colorIndex);
}
options.verbosePrint("}\n");
}
}
if (!options.palettes.empty()) {
outputPalettes(palettes);
}
// If deduplication is not happening, we just need to output the tile data and/or maps as-is
if (!options.allowDedup) {
uint32_t const nbTilesH = png.getHeight() / 8, nbTilesW = png.getWidth() / 8;
// Check the tile count
if (nbTilesW * nbTilesH > options.maxNbTiles[0] + options.maxNbTiles[1]) {
fatal("Image contains %" PRIu32 " tiles, exceeding the limit of %" PRIu16 " + %" PRIu16,
nbTilesW * nbTilesH, options.maxNbTiles[0], options.maxNbTiles[1]);
}
if (!options.output.empty()) {
options.verbosePrint("Generating unoptimized tile data...\n");
unoptimized::outputTileData(png, attrmap, palettes, mappings);
}
if (!options.tilemap.empty() || !options.attrmap.empty()) {
options.verbosePrint("Generating unoptimized tilemap and/or attrmap...\n");
unoptimized::outputMaps(png, attrmap, mappings);
}
} else {
// All of these require the deduplication process to be performed to be output
options.verbosePrint("Deduplicating tiles...\n");
optimized::UniqueTiles tiles = optimized::dedupTiles(png, attrmap, palettes, mappings);
if (tiles.size() > options.maxNbTiles[0] + options.maxNbTiles[1]) {
fatal("Image contains %zu tiles, exceeding the limit of %" PRIu16 " + %" PRIu16,
tiles.size(), options.maxNbTiles[0], options.maxNbTiles[1]);
}
if (!options.output.empty()) {
options.verbosePrint("Generating optimized tile data...\n");
optimized::outputTileData(tiles);
}
if (!options.tilemap.empty()) {
options.verbosePrint("Generating optimized tilemap...\n");
optimized::outputTilemap(attrmap);
}
if (!options.attrmap.empty()) {
options.verbosePrint("Generating optimized attrmap...\n");
optimized::outputAttrmap(attrmap, mappings);
}
}
}

View File

@@ -1,385 +0,0 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2013-2018, stag019 and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "gfx/gb.h"
void transpose_tiles(struct GBImage *gb, int width)
{
uint8_t *newdata;
int i;
int newbyte;
newdata = calloc(gb->size, 1);
if (!newdata)
err("%s: Failed to allocate memory for new data", __func__);
for (i = 0; i < gb->size; i++) {
newbyte = i / (8 * depth) * width * 8 * depth;
newbyte = newbyte % gb->size
+ 8 * depth * (newbyte / gb->size)
+ i % (8 * depth);
newdata[newbyte] = gb->data[i];
}
free(gb->data);
gb->data = newdata;
}
void raw_to_gb(const struct RawIndexedImage *raw_image, struct GBImage *gb)
{
uint8_t index;
for (unsigned int y = 0; y < raw_image->height; y++) {
for (unsigned int x = 0; x < raw_image->width; x++) {
index = raw_image->data[y][x];
index &= (1 << depth) - 1;
unsigned int byte = y * depth
+ x / 8 * raw_image->height / 8 * 8 * depth;
gb->data[byte] |= (index & 1) << (7 - x % 8);
if (depth == 2) {
gb->data[byte + 1] |=
(index >> 1) << (7 - x % 8);
}
}
}
if (!gb->horizontal)
transpose_tiles(gb, raw_image->width / 8);
}
void output_file(const struct Options *opts, const struct GBImage *gb)
{
FILE *f;
f = fopen(opts->outfile, "wb");
if (!f)
err("%s: Opening output file '%s' failed", __func__,
opts->outfile);
fwrite(gb->data, 1, gb->size - gb->trim * 8 * depth, f);
fclose(f);
}
int get_tile_index(uint8_t *tile, uint8_t **tiles, int num_tiles, int tile_size)
{
int i, j;
for (i = 0; i < num_tiles; i++) {
for (j = 0; j < tile_size; j++) {
if (tile[j] != tiles[i][j])
break;
}
if (j >= tile_size)
return i;
}
return -1;
}
uint8_t reverse_bits(uint8_t b)
{
uint8_t rev = 0;
rev |= (b & 0x80) >> 7;
rev |= (b & 0x40) >> 5;
rev |= (b & 0x20) >> 3;
rev |= (b & 0x10) >> 1;
rev |= (b & 0x08) << 1;
rev |= (b & 0x04) << 3;
rev |= (b & 0x02) << 5;
rev |= (b & 0x01) << 7;
return rev;
}
void xflip(uint8_t *tile, uint8_t *tile_xflip, int tile_size)
{
int i;
for (i = 0; i < tile_size; i++)
tile_xflip[i] = reverse_bits(tile[i]);
}
void yflip(uint8_t *tile, uint8_t *tile_yflip, int tile_size)
{
int i;
for (i = 0; i < tile_size; i++)
tile_yflip[i] = tile[(tile_size - i - 1) ^ (depth - 1)];
}
/*
* get_mirrored_tile_index looks for `tile` in tile array `tiles`, also
* checking x-, y-, and xy-mirrored versions of `tile`. If one is found,
* `*flags` is set according to the type of mirroring and the index of the
* matched tile is returned. If no match is found, -1 is returned.
*/
int get_mirrored_tile_index(uint8_t *tile, uint8_t **tiles, int num_tiles,
int tile_size, int *flags)
{
int index;
uint8_t *tile_xflip;
uint8_t *tile_yflip;
index = get_tile_index(tile, tiles, num_tiles, tile_size);
if (index >= 0) {
*flags = 0;
return index;
}
tile_yflip = malloc(tile_size);
if (!tile_yflip)
err("%s: Failed to allocate memory for Y flip of tile",
__func__);
yflip(tile, tile_yflip, tile_size);
index = get_tile_index(tile_yflip, tiles, num_tiles, tile_size);
if (index >= 0) {
*flags = YFLIP;
free(tile_yflip);
return index;
}
tile_xflip = malloc(tile_size);
if (!tile_xflip)
err("%s: Failed to allocate memory for X flip of tile",
__func__);
xflip(tile, tile_xflip, tile_size);
index = get_tile_index(tile_xflip, tiles, num_tiles, tile_size);
if (index >= 0) {
*flags = XFLIP;
free(tile_yflip);
free(tile_xflip);
return index;
}
yflip(tile_xflip, tile_yflip, tile_size);
index = get_tile_index(tile_yflip, tiles, num_tiles, tile_size);
if (index >= 0)
*flags = XFLIP | YFLIP;
free(tile_yflip);
free(tile_xflip);
return index;
}
void create_mapfiles(const struct Options *opts, struct GBImage *gb,
struct Mapfile *tilemap, struct Mapfile *attrmap)
{
int i, j;
int gb_i;
int tile_size;
int max_tiles;
int num_tiles;
int index;
int flags;
int gb_size;
uint8_t *tile;
uint8_t **tiles;
tile_size = sizeof(*tile) * depth * 8;
gb_size = gb->size - (gb->trim * tile_size);
max_tiles = gb_size / tile_size;
/* If the input image doesn't fill the last tile, increase the count. */
if (gb_size > max_tiles * tile_size)
max_tiles++;
tiles = calloc(max_tiles, sizeof(*tiles));
if (!tiles)
err("%s: Failed to allocate memory for tiles", __func__);
num_tiles = 0;
if (*opts->tilemapfile) {
tilemap->data = calloc(max_tiles, sizeof(*tilemap->data));
if (!tilemap->data)
err("%s: Failed to allocate memory for tilemap data",
__func__);
tilemap->size = 0;
}
if (*opts->attrmapfile) {
attrmap->data = calloc(max_tiles, sizeof(*attrmap->data));
if (!attrmap->data)
err("%s: Failed to allocate memory for attrmap data",
__func__);
attrmap->size = 0;
}
gb_i = 0;
while (gb_i < gb_size) {
flags = 0;
tile = malloc(tile_size);
if (!tile)
err("%s: Failed to allocate memory for tile",
__func__);
/*
* If the input image doesn't fill the last tile,
* `gb_i` will reach `gb_size`.
*/
for (i = 0; i < tile_size && gb_i < gb_size; i++) {
tile[i] = gb->data[gb_i];
gb_i++;
}
if (opts->unique) {
if (opts->mirror) {
index = get_mirrored_tile_index(tile, tiles,
num_tiles,
tile_size,
&flags);
} else {
index = get_tile_index(tile, tiles, num_tiles,
tile_size);
}
if (index < 0) {
index = num_tiles;
tiles[num_tiles] = tile;
num_tiles++;
} else {
free(tile);
}
} else {
index = num_tiles;
tiles[num_tiles] = tile;
num_tiles++;
}
if (*opts->tilemapfile) {
tilemap->data[tilemap->size] = index;
tilemap->size++;
}
if (*opts->attrmapfile) {
attrmap->data[attrmap->size] = flags;
attrmap->size++;
}
}
if (opts->unique) {
free(gb->data);
gb->data = malloc(tile_size * num_tiles);
if (!gb->data)
err("%s: Failed to allocate memory for tile data",
__func__);
for (i = 0; i < num_tiles; i++) {
tile = tiles[i];
for (j = 0; j < tile_size; j++)
gb->data[i * tile_size + j] = tile[j];
}
gb->size = i * tile_size;
}
for (i = 0; i < num_tiles; i++)
free(tiles[i]);
free(tiles);
}
void output_tilemap_file(const struct Options *opts,
const struct Mapfile *tilemap)
{
FILE *f;
f = fopen(opts->tilemapfile, "wb");
if (!f)
err("%s: Opening tilemap file '%s' failed", __func__,
opts->tilemapfile);
fwrite(tilemap->data, 1, tilemap->size, f);
fclose(f);
if (opts->tilemapout)
free(opts->tilemapfile);
}
void output_attrmap_file(const struct Options *opts,
const struct Mapfile *attrmap)
{
FILE *f;
f = fopen(opts->attrmapfile, "wb");
if (!f)
err("%s: Opening attrmap file '%s' failed", __func__,
opts->attrmapfile);
fwrite(attrmap->data, 1, attrmap->size, f);
fclose(f);
if (opts->attrmapout)
free(opts->attrmapfile);
}
/*
* based on the Gaussian-like curve used by SameBoy since commit
* 65dd02cc52f531dbbd3a7e6014e99d5b24e71a4c (Oct 2017)
* with ties resolved by comparing the difference of the squares.
*/
static int reverse_curve[] = {
0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7,
7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24,
24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 30, 30, 31,
};
void output_palette_file(const struct Options *opts,
const struct RawIndexedImage *raw_image)
{
FILE *f;
int i, color;
uint8_t cur_bytes[2];
f = fopen(opts->palfile, "wb");
if (!f)
err("%s: Opening palette file '%s' failed", __func__,
opts->palfile);
for (i = 0; i < raw_image->num_colors; i++) {
int r = raw_image->palette[i].red;
int g = raw_image->palette[i].green;
int b = raw_image->palette[i].blue;
if (opts->colorcurve) {
g = (g * 4 - b) / 3;
if (g < 0)
g = 0;
r = reverse_curve[r];
g = reverse_curve[g];
b = reverse_curve[b];
} else {
r >>= 3;
g >>= 3;
b >>= 3;
}
color = b << 10 | g << 5 | r;
cur_bytes[0] = color & 0xFF;
cur_bytes[1] = color >> 8;
fwrite(cur_bytes, 2, 1, f);
}
fclose(f);
if (opts->palout)
free(opts->palfile);
}

View File

@@ -1,358 +0,0 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2013-2018, stag019 and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include <png.h>
#include <stdlib.h>
#include <string.h>
#include "gfx/main.h"
#include "extern/getopt.h"
#include "version.h"
int depth, colors;
/* Short options */
static char const *optstring = "Aa:CDd:Ffhmo:Pp:Tt:uVvx:";
/*
* Equivalent long options
* Please keep in the same order as short opts
*
* Also, make sure long opts don't create ambiguity:
* A long opt's name should start with the same letter as its short opt,
* except if it doesn't create any ambiguity (`verbose` versus `version`).
* This is because long opt matching, even to a single char, is prioritized
* over short opt matching
*/
static struct option const longopts[] = {
{ "output-attr-map", no_argument, NULL, 'A' },
{ "attr-map", required_argument, NULL, 'a' },
{ "color-curve", no_argument, NULL, 'C' },
{ "debug", no_argument, NULL, 'D' },
{ "depth", required_argument, NULL, 'd' },
{ "fix", no_argument, NULL, 'f' },
{ "fix-and-save", no_argument, NULL, 'F' },
{ "horizontal", no_argument, NULL, 'h' },
{ "mirror-tiles", no_argument, NULL, 'm' },
{ "output", required_argument, NULL, 'o' },
{ "output-palette", no_argument, NULL, 'P' },
{ "palette", required_argument, NULL, 'p' },
{ "output-tilemap", no_argument, NULL, 'T' },
{ "tilemap", required_argument, NULL, 't' },
{ "unique-tiles", no_argument, NULL, 'u' },
{ "version", no_argument, NULL, 'V' },
{ "verbose", no_argument, NULL, 'v' },
{ "trim-end", required_argument, NULL, 'x' },
{ NULL, no_argument, NULL, 0 }
};
static void print_usage(void)
{
fputs(
"Usage: rgbgfx [-CDhmuVv] [-f | -F] [-a <attr_map> | -A] [-d <depth>]\n"
" [-o <out_file>] [-p <pal_file> | -P] [-t <tile_map> | -T]\n"
" [-x <tiles>] <file>\n"
"Useful options:\n"
" -f, --fix make the input image an indexed PNG\n"
" -m, --mirror-tiles optimize out mirrored tiles\n"
" -o, --output <path> set the output binary file\n"
" -t, --tilemap <path> set the output tilemap file\n"
" -u, --unique-tiles optimize out identical tiles\n"
" -V, --version print RGBGFX version and exit\n"
"\n"
"For help, use `man rgbgfx' or go to https://rgbds.gbdev.io/docs/\n",
stderr);
exit(1);
}
int main(int argc, char *argv[])
{
int ch, size;
struct Options opts = {0};
struct ImageOptions png_options = {0};
struct RawIndexedImage *raw_image;
struct GBImage gb = {0};
struct Mapfile tilemap = {0};
struct Mapfile attrmap = {0};
char *ext;
opts.tilemapfile = "";
opts.attrmapfile = "";
opts.palfile = "";
opts.outfile = "";
depth = 2;
while ((ch = musl_getopt_long_only(argc, argv, optstring, longopts,
NULL)) != -1) {
switch (ch) {
case 'A':
opts.attrmapout = true;
break;
case 'a':
opts.attrmapfile = musl_optarg;
break;
case 'C':
opts.colorcurve = true;
break;
case 'D':
opts.debug = true;
break;
case 'd':
depth = strtoul(musl_optarg, NULL, 0);
break;
case 'F':
opts.hardfix = true;
/* fallthrough */
case 'f':
opts.fix = true;
break;
case 'h':
opts.horizontal = true;
break;
case 'm':
opts.mirror = true;
opts.unique = true;
break;
case 'o':
opts.outfile = musl_optarg;
break;
case 'P':
opts.palout = true;
break;
case 'p':
opts.palfile = musl_optarg;
break;
case 'T':
opts.tilemapout = true;
break;
case 't':
opts.tilemapfile = musl_optarg;
break;
case 'u':
opts.unique = true;
break;
case 'V':
printf("rgbgfx %s\n", get_package_version_string());
exit(0);
case 'v':
opts.verbose = true;
break;
case 'x':
opts.trim = strtoul(musl_optarg, NULL, 0);
break;
default:
print_usage();
/* NOTREACHED */
}
}
argc -= musl_optind;
argv += musl_optind;
if (argc == 0) {
fputs("FATAL: no input files\n", stderr);
print_usage();
}
#define WARN_MISMATCH(property) \
warnx("The PNG's " property \
" setting doesn't match the one defined on the command line")
opts.infile = argv[argc - 1];
if (depth != 1 && depth != 2)
errx("Depth option must be either 1 or 2.");
colors = 1 << depth;
raw_image = input_png_file(&opts, &png_options);
png_options.tilemapfile = "";
png_options.attrmapfile = "";
png_options.palfile = "";
if (png_options.horizontal != opts.horizontal) {
if (opts.verbose)
WARN_MISMATCH("horizontal");
if (opts.hardfix)
png_options.horizontal = opts.horizontal;
}
if (png_options.horizontal)
opts.horizontal = png_options.horizontal;
if (png_options.trim != opts.trim) {
if (opts.verbose)
WARN_MISMATCH("trim");
if (opts.hardfix)
png_options.trim = opts.trim;
}
if (png_options.trim)
opts.trim = png_options.trim;
if (raw_image->width % 8) {
errx("Input PNG file %s not sized correctly. The image's width must be a multiple of 8.",
opts.infile);
}
if (raw_image->width / 8 > 1 && raw_image->height % 8) {
errx("Input PNG file %s not sized correctly. If the image is more than 1 tile wide, its height must be a multiple of 8.",
opts.infile);
}
if (opts.trim &&
opts.trim > (raw_image->width / 8) * (raw_image->height / 8) - 1) {
errx("Trim (%d) for input raw_image file '%s' too large (max: %u)",
opts.trim, opts.infile,
(raw_image->width / 8) * (raw_image->height / 8) - 1);
}
if (strcmp(png_options.tilemapfile, opts.tilemapfile) != 0) {
if (opts.verbose)
WARN_MISMATCH("tilemap file");
if (opts.hardfix)
png_options.tilemapfile = opts.tilemapfile;
}
if (!*opts.tilemapfile)
opts.tilemapfile = png_options.tilemapfile;
if (png_options.tilemapout != opts.tilemapout) {
if (opts.verbose)
WARN_MISMATCH("tilemap file");
if (opts.hardfix)
png_options.tilemapout = opts.tilemapout;
}
if (png_options.tilemapout)
opts.tilemapout = png_options.tilemapout;
if (strcmp(png_options.attrmapfile, opts.attrmapfile) != 0) {
if (opts.verbose)
WARN_MISMATCH("attrmap file");
if (opts.hardfix)
png_options.attrmapfile = opts.attrmapfile;
}
if (!*opts.attrmapfile)
opts.attrmapfile = png_options.attrmapfile;
if (png_options.attrmapout != opts.attrmapout) {
if (opts.verbose)
WARN_MISMATCH("attrmap file");
if (opts.hardfix)
png_options.attrmapout = opts.attrmapout;
}
if (png_options.attrmapout)
opts.attrmapout = png_options.attrmapout;
if (strcmp(png_options.palfile, opts.palfile) != 0) {
if (opts.verbose)
WARN_MISMATCH("palette file");
if (opts.hardfix)
png_options.palfile = opts.palfile;
}
if (!*opts.palfile)
opts.palfile = png_options.palfile;
if (png_options.palout != opts.palout) {
if (opts.verbose)
WARN_MISMATCH("palette file");
if (opts.hardfix)
png_options.palout = opts.palout;
}
#undef WARN_MISMATCH
if (png_options.palout)
opts.palout = png_options.palout;
if (!*opts.tilemapfile && opts.tilemapout) {
ext = strrchr(opts.infile, '.');
if (ext != NULL) {
size = ext - opts.infile + 9;
opts.tilemapfile = malloc(size);
strncpy(opts.tilemapfile, opts.infile, size);
*strrchr(opts.tilemapfile, '.') = '\0';
strcat(opts.tilemapfile, ".tilemap");
} else {
opts.tilemapfile = malloc(strlen(opts.infile) + 9);
strcpy(opts.tilemapfile, opts.infile);
strcat(opts.tilemapfile, ".tilemap");
}
}
if (!*opts.attrmapfile && opts.attrmapout) {
ext = strrchr(opts.infile, '.');
if (ext != NULL) {
size = ext - opts.infile + 9;
opts.attrmapfile = malloc(size);
strncpy(opts.attrmapfile, opts.infile, size);
*strrchr(opts.attrmapfile, '.') = '\0';
strcat(opts.attrmapfile, ".attrmap");
} else {
opts.attrmapfile = malloc(strlen(opts.infile) + 9);
strcpy(opts.attrmapfile, opts.infile);
strcat(opts.attrmapfile, ".attrmap");
}
}
if (!*opts.palfile && opts.palout) {
ext = strrchr(opts.infile, '.');
if (ext != NULL) {
size = ext - opts.infile + 5;
opts.palfile = malloc(size);
strncpy(opts.palfile, opts.infile, size);
*strrchr(opts.palfile, '.') = '\0';
strcat(opts.palfile, ".pal");
} else {
opts.palfile = malloc(strlen(opts.infile) + 5);
strcpy(opts.palfile, opts.infile);
strcat(opts.palfile, ".pal");
}
}
gb.size = raw_image->width * raw_image->height * depth / 8;
gb.data = calloc(gb.size, 1);
gb.trim = opts.trim;
gb.horizontal = opts.horizontal;
if (*opts.outfile || *opts.tilemapfile || *opts.attrmapfile) {
raw_to_gb(raw_image, &gb);
create_mapfiles(&opts, &gb, &tilemap, &attrmap);
}
if (*opts.outfile)
output_file(&opts, &gb);
if (*opts.tilemapfile)
output_tilemap_file(&opts, &tilemap);
if (*opts.attrmapfile)
output_attrmap_file(&opts, &attrmap);
if (*opts.palfile)
output_palette_file(&opts, raw_image);
if (opts.fix || opts.debug)
output_png_file(&opts, &png_options, raw_image);
destroy_raw_image(&raw_image);
free(gb.data);
return 0;
}

321
src/gfx/main.cpp Normal file
View File

@@ -0,0 +1,321 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2022, Eldred Habert and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include "gfx/main.hpp"
#include <algorithm>
#include <assert.h>
#include <charconv>
#include <filesystem>
#include <inttypes.h>
#include <limits>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "extern/getopt.h"
#include "version.h"
#include "gfx/convert.hpp"
Options options;
static uintmax_t nbErrors;
void warning(char const *fmt, ...) {
va_list ap;
fputs("warning: ", stderr);
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
putc('\n', stderr);
}
void error(char const *fmt, ...) {
va_list ap;
fputs("error: ", stderr);
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
putc('\n', stderr);
if (nbErrors != std::numeric_limits<decltype(nbErrors)>::max())
nbErrors++;
}
[[noreturn]] void fatal(char const *fmt, ...) {
va_list ap;
fputs("FATAL: ", stderr);
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
putc('\n', stderr);
if (nbErrors != std::numeric_limits<decltype(nbErrors)>::max())
nbErrors++;
fprintf(stderr, "Conversion aborted after %ju error%s\n", nbErrors, nbErrors == 1 ? "" : "s");
exit(1);
}
void Options::verbosePrint(char const *fmt, ...) const {
if (beVerbose) {
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
}
}
// Short options
static char const *optstring = "Aa:CDd:Ffhmo:Pp:Tt:uVvx:";
/*
* Equivalent long options
* Please keep in the same order as short opts
*
* Also, make sure long opts don't create ambiguity:
* A long opt's name should start with the same letter as its short opt,
* except if it doesn't create any ambiguity (`verbose` versus `version`).
* This is because long opt matching, even to a single char, is prioritized
* over short opt matching
*/
static struct option const longopts[] = {
{"output-attr-map", no_argument, NULL, 'A'},
{"attr-map", required_argument, NULL, 'a'},
{"color-curve", no_argument, NULL, 'C'},
{"debug", no_argument, NULL, 'D'},
{"depth", required_argument, NULL, 'd'},
{"fix", no_argument, NULL, 'f'},
{"fix-and-save", no_argument, NULL, 'F'},
{"horizontal", no_argument, NULL, 'h'},
{"mirror-tiles", no_argument, NULL, 'm'},
{"output", required_argument, NULL, 'o'},
{"output-palette", no_argument, NULL, 'P'},
{"palette", required_argument, NULL, 'p'},
{"output-tilemap", no_argument, NULL, 'T'},
{"tilemap", required_argument, NULL, 't'},
{"unique-tiles", no_argument, NULL, 'u'},
{"version", no_argument, NULL, 'V'},
{"verbose", no_argument, NULL, 'v'},
{"trim-end", required_argument, NULL, 'x'},
{NULL, no_argument, NULL, 0 }
};
static void print_usage(void) {
fputs("Usage: rgbgfx [-CDhmuVv] [-f | -F] [-a <attr_map> | -A] [-d <depth>]\n"
" [-o <out_file>] [-p <pal_file> | -P] [-t <tile_map> | -T]\n"
" [-x <tiles>] <file>\n"
"Useful options:\n"
" -f, --fix make the input image an indexed PNG\n"
" -m, --mirror-tiles optimize out mirrored tiles\n"
" -o, --output <path> set the output binary file\n"
" -t, --tilemap <path> set the output tilemap file\n"
" -u, --unique-tiles optimize out identical tiles\n"
" -V, --version print RGBGFX version and exit\n"
"\n"
"For help, use `man rgbgfx' or go to https://rgbds.gbdev.io/docs/\n",
stderr);
exit(1);
}
void fputsv(std::string_view const &view, FILE *f) {
if (view.data()) {
fwrite(view.data(), sizeof(char), view.size(), f);
}
}
int main(int argc, char *argv[]) {
int opt;
bool autoAttrmap = false, autoTilemap = false, autoPalettes = false;
auto parseDecimalArg = [&opt](auto &out) {
char const *end = &musl_optarg[strlen(musl_optarg)];
// `options.bitDepth` is not modified if the parse fails entirely
auto result = std::from_chars(musl_optarg, end, out, 10);
if (result.ec == std::errc::result_out_of_range) {
error("Argument to option '%c' (\"%s\") is out of range", opt, musl_optarg);
return false;
} else if (result.ptr != end) {
error("Invalid argument to option '%c' (\"%s\")", opt, musl_optarg);
return false;
}
return true;
};
while ((opt = musl_getopt_long_only(argc, argv, optstring, longopts, nullptr)) != -1) {
switch (opt) {
case 'A':
autoAttrmap = true;
break;
case 'a':
autoAttrmap = false;
options.attrmap = musl_optarg;
break;
case 'C':
options.useColorCurve = true;
break;
case 'd':
if (parseDecimalArg(options.bitDepth) && options.bitDepth != 1
&& options.bitDepth != 2) {
error("Bit depth must be 1 or 2, not %" PRIu8 "");
options.bitDepth = 2;
}
break;
case 'f':
options.fixInput = true;
break;
case 'h':
warning("`-h` is deprecated, use `-???` instead");
[[fallthrough]];
case '?': // TODO
options.columnMajor = true;
break;
case 'm':
options.allowMirroring = true;
[[fallthrough]]; // Imply `-u`
case 'u':
options.allowDedup = true;
break;
case 'o':
options.output = musl_optarg;
break;
case 'P':
autoPalettes = true;
break;
case 'p':
autoPalettes = false;
options.palettes = musl_optarg;
break;
case 'T':
autoTilemap = true;
break;
case 't':
autoTilemap = false;
options.tilemap = musl_optarg;
break;
case 'V':
printf("rgbgfx %s\n", get_package_version_string());
exit(0);
case 'v':
options.beVerbose = true;
break;
case 'x':
parseDecimalArg(options.trim);
break;
case 'D':
case 'F':
warning("Ignoring option '%c'", musl_optopt);
break;
default:
print_usage();
exit(1);
}
}
if (options.nbColorsPerPal == 0) {
options.nbColorsPerPal = 1 << options.bitDepth;
} else if (options.nbColorsPerPal > 1u << options.bitDepth) {
error("%" PRIu8 "bpp palettes can only contain %u colors, not %" PRIu8, options.bitDepth,
1u << options.bitDepth, options.nbColorsPerPal);
}
if (musl_optind == argc) {
fputs("FATAL: No input image specified\n", stderr);
print_usage();
exit(1);
} else if (argc - musl_optind != 1) {
fprintf(stderr, "FATAL: %d input images were specified instead of 1\n", argc - musl_optind);
print_usage();
exit(1);
}
options.input = argv[argc - 1];
auto autoOutPath = [](bool autoOptEnabled, std::filesystem::path &path, char const *extension) {
if (autoOptEnabled) {
path = options.input;
path.replace_extension(extension);
}
};
autoOutPath(autoAttrmap, options.attrmap, ".attrmap");
autoOutPath(autoTilemap, options.tilemap, ".tilemap");
autoOutPath(autoPalettes, options.palettes, ".pal");
if (options.beVerbose) {
fprintf(stderr, "rgbgfx %s\n", get_package_version_string());
fputs("Options:\n", stderr);
if (options.fixInput)
fputs("\tConvert input to indexed\n", stderr);
if (options.columnMajor)
fputs("\tOutput {tile,attr}map in column-major order\n", stderr);
if (options.allowMirroring)
fputs("\tAllow mirroring tiles\n", stderr);
if (options.allowDedup)
fputs("\tAllow deduplicating tiles\n", stderr);
if (options.useColorCurve)
fputs("\tUse color curve\n", stderr);
fprintf(stderr, "\tBit depth: %" PRIu8 "bpp\n", options.bitDepth);
fprintf(stderr, "\tTrim the last %" PRIu64 " tiles\n", options.trim);
fprintf(stderr, "\tBase tile IDs: [%" PRIu8 ", %" PRIu8 "]\n", options.baseTileIDs[0],
options.baseTileIDs[1]);
fprintf(stderr, "\tMax number of tiles: [%" PRIu16 ", %" PRIu16 "]\n",
options.maxNbTiles[0], options.maxNbTiles[1]);
auto printPath = [](char const *name, std::filesystem::path const &path) {
if (!path.empty()) {
fprintf(stderr, "\t%s: %s\n", name, path.c_str());
}
};
printPath("Input image", options.input);
printPath("Output tile data", options.output);
printPath("Output tilemap", options.tilemap);
printPath("Output attrmap", options.attrmap);
printPath("Output palettes", options.palettes);
fputs("Ready.\n", stderr);
}
process();
return 0;
}
void Palette::addColor(uint16_t color) {
for (size_t i = 0; true; ++i) {
assert(i < colors.size()); // The packing should guarantee this
if (colors[i] == color) { // The color is already present
break;
} else if (colors[i] == UINT16_MAX) { // Empty slot
colors[i] = color;
break;
}
}
}
uint8_t Palette::indexOf(uint16_t color) const {
return std::distance(colors.begin(), std::find(colors.begin(), colors.end(), color));
}
auto Palette::begin() -> decltype(colors)::iterator {
return colors.begin();
}
auto Palette::end() -> decltype(colors)::iterator {
return std::find(colors.begin(), colors.end(), UINT16_MAX);
}
auto Palette::begin() const -> decltype(colors)::const_iterator {
return colors.begin();
}
auto Palette::end() const -> decltype(colors)::const_iterator {
return std::find(colors.begin(), colors.end(), UINT16_MAX);
}

View File

@@ -1,806 +0,0 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2013-2018, stag019 and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include <png.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gfx/makepng.h"
static void initialize_png(struct PNGImage *img, FILE * f);
static struct RawIndexedImage *indexed_png_to_raw(struct PNGImage *img);
static struct RawIndexedImage *grayscale_png_to_raw(struct PNGImage *img);
static struct RawIndexedImage *truecolor_png_to_raw(struct PNGImage *img);
static void get_text(const struct PNGImage *img,
struct ImageOptions *png_options);
static void set_text(const struct PNGImage *img,
const struct ImageOptions *png_options);
static void free_png_data(const struct PNGImage *png);
struct RawIndexedImage *input_png_file(const struct Options *opts,
struct ImageOptions *png_options)
{
struct PNGImage img;
struct RawIndexedImage *raw_image;
FILE *f;
f = fopen(opts->infile, "rb");
if (!f)
err("Opening input png file '%s' failed", opts->infile);
initialize_png(&img, f);
if (img.depth != depth) {
if (opts->verbose) {
warnx("Image bit depth is not %d (is %d).",
depth, img.depth);
}
}
switch (img.type) {
case PNG_COLOR_TYPE_PALETTE:
raw_image = indexed_png_to_raw(&img); break;
case PNG_COLOR_TYPE_GRAY:
case PNG_COLOR_TYPE_GRAY_ALPHA:
raw_image = grayscale_png_to_raw(&img); break;
case PNG_COLOR_TYPE_RGB:
case PNG_COLOR_TYPE_RGB_ALPHA:
raw_image = truecolor_png_to_raw(&img); break;
default:
/* Shouldn't happen, but might as well handle just in case. */
errx("Input PNG file is of invalid color type.");
}
get_text(&img, png_options);
png_destroy_read_struct(&img.png, &img.info, NULL);
fclose(f);
free_png_data(&img);
return raw_image;
}
void output_png_file(const struct Options *opts,
const struct ImageOptions *png_options,
const struct RawIndexedImage *raw_image)
{
FILE *f;
char *outfile;
struct PNGImage img;
png_color *png_palette;
int i;
/*
* TODO: Variable outfile is for debugging purposes. Eventually,
* opts.infile will be used directly.
*/
if (opts->debug) {
outfile = malloc(strlen(opts->infile) + 5);
if (!outfile)
err("%s: Failed to allocate memory for outfile",
__func__);
strcpy(outfile, opts->infile);
strcat(outfile, ".out");
} else {
outfile = opts->infile;
}
f = fopen(outfile, "wb");
if (!f)
err("Opening output png file '%s' failed", outfile);
if (opts->debug)
free(outfile);
img.png = png_create_write_struct(PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);
if (!img.png)
errx("Creating png structure failed");
img.info = png_create_info_struct(img.png);
if (!img.info)
errx("Creating png info structure failed");
if (setjmp(png_jmpbuf(img.png)))
exit(1);
png_init_io(img.png, f);
png_set_IHDR(img.png, img.info, raw_image->width, raw_image->height,
8, PNG_COLOR_TYPE_PALETTE, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
png_palette = malloc(sizeof(*png_palette) * raw_image->num_colors);
if (!png_palette)
err("%s: Failed to allocate memory for PNG palette",
__func__);
for (i = 0; i < raw_image->num_colors; i++) {
png_palette[i].red = raw_image->palette[i].red;
png_palette[i].green = raw_image->palette[i].green;
png_palette[i].blue = raw_image->palette[i].blue;
}
png_set_PLTE(img.png, img.info, png_palette, raw_image->num_colors);
free(png_palette);
if (opts->fix)
set_text(&img, png_options);
png_write_info(img.png, img.info);
png_write_image(img.png, (png_byte **) raw_image->data);
png_write_end(img.png, NULL);
png_destroy_write_struct(&img.png, &img.info);
fclose(f);
}
void destroy_raw_image(struct RawIndexedImage **raw_image_ptr_ptr)
{
struct RawIndexedImage *raw_image = *raw_image_ptr_ptr;
for (unsigned int y = 0; y < raw_image->height; y++)
free(raw_image->data[y]);
free(raw_image->data);
free(raw_image->palette);
free(raw_image);
*raw_image_ptr_ptr = NULL;
}
static void initialize_png(struct PNGImage *img, FILE *f)
{
img->png = png_create_read_struct(PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);
if (!img->png)
errx("Creating png structure failed");
img->info = png_create_info_struct(img->png);
if (!img->info)
errx("Creating png info structure failed");
if (setjmp(png_jmpbuf(img->png)))
exit(1);
png_init_io(img->png, f);
png_read_info(img->png, img->info);
img->width = png_get_image_width(img->png, img->info);
img->height = png_get_image_height(img->png, img->info);
img->depth = png_get_bit_depth(img->png, img->info);
img->type = png_get_color_type(img->png, img->info);
}
static void read_png(struct PNGImage *img);
static struct RawIndexedImage *create_raw_image(int width, int height,
int num_colors);
static void set_raw_image_palette(struct RawIndexedImage *raw_image,
png_color const *palette, int num_colors);
static struct RawIndexedImage *indexed_png_to_raw(struct PNGImage *img)
{
struct RawIndexedImage *raw_image;
png_color *palette;
int colors_in_PLTE;
int colors_in_new_palette;
png_byte *trans_alpha;
int num_trans;
png_color_16 *trans_color;
png_color *original_palette;
uint8_t *old_to_new_palette;
int i, x, y;
if (img->depth < 8)
png_set_packing(img->png);
png_get_PLTE(img->png, img->info, &palette, &colors_in_PLTE);
raw_image = create_raw_image(img->width, img->height, colors);
/*
* Transparent palette entries are removed, and the palette is
* collapsed. Transparent pixels are then replaced with palette index 0.
* This way, an indexed PNG can contain transparent pixels in *addition*
* to 4 normal colors.
*/
if (png_get_tRNS(img->png, img->info, &trans_alpha, &num_trans,
&trans_color)) {
original_palette = palette;
palette = malloc(sizeof(*palette) * colors_in_PLTE);
if (!palette)
err("%s: Failed to allocate memory for palette",
__func__);
colors_in_new_palette = 0;
old_to_new_palette = malloc(sizeof(*old_to_new_palette)
* colors_in_PLTE);
if (!old_to_new_palette)
err("%s: Failed to allocate memory for new palette",
__func__);
for (i = 0; i < num_trans; i++) {
if (trans_alpha[i] == 0) {
old_to_new_palette[i] = 0;
} else {
old_to_new_palette[i] = colors_in_new_palette;
palette[colors_in_new_palette++] =
original_palette[i];
}
}
for (i = num_trans; i < colors_in_PLTE; i++) {
old_to_new_palette[i] = colors_in_new_palette;
palette[colors_in_new_palette++] = original_palette[i];
}
if (colors_in_new_palette != colors_in_PLTE) {
palette = realloc(palette,
sizeof(*palette) *
colors_in_new_palette);
if (!palette)
err("%s: Failed to allocate memory for palette",
__func__);
}
/*
* Setting and validating palette before reading
* allows us to error out *before* doing the data
* transformation if the palette is too long.
*/
set_raw_image_palette(raw_image, palette,
colors_in_new_palette);
read_png(img);
for (y = 0; y < img->height; y++) {
for (x = 0; x < img->width; x++) {
raw_image->data[y][x] =
old_to_new_palette[img->data[y][x]];
}
}
free(palette);
free(old_to_new_palette);
} else {
set_raw_image_palette(raw_image, palette, colors_in_PLTE);
read_png(img);
for (y = 0; y < img->height; y++) {
for (x = 0; x < img->width; x++)
raw_image->data[y][x] = img->data[y][x];
}
}
return raw_image;
}
static struct RawIndexedImage *grayscale_png_to_raw(struct PNGImage *img)
{
if (img->depth < 8)
png_set_expand_gray_1_2_4_to_8(img->png);
png_set_gray_to_rgb(img->png);
return truecolor_png_to_raw(img);
}
static void rgba_png_palette(struct PNGImage *img,
png_color **palette_ptr_ptr, int *num_colors);
static struct RawIndexedImage
*processed_rgba_png_to_raw(const struct PNGImage *img,
png_color const *palette,
int colors_in_palette);
static struct RawIndexedImage *truecolor_png_to_raw(struct PNGImage *img)
{
struct RawIndexedImage *raw_image;
png_color *palette;
int colors_in_palette;
if (img->depth == 16) {
#if PNG_LIBPNG_VER >= 10504
png_set_scale_16(img->png);
#else
png_set_strip_16(img->png);
#endif
}
if (!(img->type & PNG_COLOR_MASK_ALPHA)) {
if (png_get_valid(img->png, img->info, PNG_INFO_tRNS))
png_set_tRNS_to_alpha(img->png);
else
png_set_add_alpha(img->png, 0xFF, PNG_FILLER_AFTER);
}
read_png(img);
rgba_png_palette(img, &palette, &colors_in_palette);
raw_image = processed_rgba_png_to_raw(img, palette, colors_in_palette);
free(palette);
return raw_image;
}
static void rgba_PLTE_palette(struct PNGImage *img,
png_color **palette_ptr_ptr, int *num_colors);
static void rgba_build_palette(struct PNGImage *img,
png_color **palette_ptr_ptr, int *num_colors);
static void rgba_png_palette(struct PNGImage *img,
png_color **palette_ptr_ptr, int *num_colors)
{
if (png_get_valid(img->png, img->info, PNG_INFO_PLTE))
rgba_PLTE_palette(img, palette_ptr_ptr, num_colors);
else
rgba_build_palette(img, palette_ptr_ptr, num_colors);
}
static void rgba_PLTE_palette(struct PNGImage *img,
png_color **palette_ptr_ptr, int *num_colors)
{
png_get_PLTE(img->png, img->info, palette_ptr_ptr, num_colors);
/*
* Lets us free the palette manually instead of leaving it to libpng,
* which lets us handle a PLTE and a built palette the same way.
*/
png_data_freer(img->png, img->info,
PNG_USER_WILL_FREE_DATA, PNG_FREE_PLTE);
}
static void update_built_palette(png_color *palette,
png_color const *pixel_color, png_byte alpha,
int *num_colors, bool *only_grayscale);
static int fit_grayscale_palette(png_color *palette, int *num_colors);
static void order_color_palette(png_color *palette, int num_colors);
static void rgba_build_palette(struct PNGImage *img,
png_color **palette_ptr_ptr, int *num_colors)
{
png_color *palette;
int y, value_index;
png_color cur_pixel_color;
png_byte cur_alpha;
bool only_grayscale = true;
/*
* By filling the palette up with black by default, if the image
* doesn't have enough colors, the palette gets padded with black.
*/
*palette_ptr_ptr = calloc(colors, sizeof(**palette_ptr_ptr));
if (!*palette_ptr_ptr)
err("%s: Failed to allocate memory for palette", __func__);
palette = *palette_ptr_ptr;
*num_colors = 0;
for (y = 0; y < img->height; y++) {
value_index = 0;
while (value_index < img->width * 4) {
cur_pixel_color.red = img->data[y][value_index++];
cur_pixel_color.green = img->data[y][value_index++];
cur_pixel_color.blue = img->data[y][value_index++];
cur_alpha = img->data[y][value_index++];
update_built_palette(palette, &cur_pixel_color,
cur_alpha,
num_colors, &only_grayscale);
}
}
/* In order not to count 100% transparent images as grayscale. */
only_grayscale = *num_colors ? only_grayscale : false;
if (!only_grayscale || !fit_grayscale_palette(palette, num_colors))
order_color_palette(palette, *num_colors);
}
static void update_built_palette(png_color *palette,
png_color const *pixel_color, png_byte alpha,
int *num_colors, bool *only_grayscale)
{
bool color_exists;
png_color cur_palette_color;
int i;
/*
* Transparent pixels don't count toward the palette,
* as they'll be replaced with color #0 later.
*/
if (alpha == 0)
return;
if (*only_grayscale && !(pixel_color->red == pixel_color->green &&
pixel_color->red == pixel_color->blue)) {
*only_grayscale = false;
}
color_exists = false;
for (i = 0; i < *num_colors; i++) {
cur_palette_color = palette[i];
if (pixel_color->red == cur_palette_color.red &&
pixel_color->green == cur_palette_color.green &&
pixel_color->blue == cur_palette_color.blue) {
color_exists = true;
break;
}
}
if (!color_exists) {
if (*num_colors == colors) {
errx("Too many colors in input PNG file to fit into a %d-bit palette (max %d).",
depth, colors);
}
palette[*num_colors] = *pixel_color;
(*num_colors)++;
}
}
static int fit_grayscale_palette(png_color *palette, int *num_colors)
{
int interval = 256 / colors;
png_color *fitted_palette = malloc(sizeof(*fitted_palette) * colors);
bool *set_indices = calloc(colors, sizeof(*set_indices));
int i, shade_index;
if (!fitted_palette)
err("%s: Failed to allocate memory for palette", __func__);
if (!set_indices)
err("%s: Failed to allocate memory for indices", __func__);
fitted_palette[0].red = 0xFF;
fitted_palette[0].green = 0xFF;
fitted_palette[0].blue = 0xFF;
fitted_palette[colors - 1].red = 0;
fitted_palette[colors - 1].green = 0;
fitted_palette[colors - 1].blue = 0;
if (colors == 4) {
fitted_palette[1].red = 0xA9;
fitted_palette[1].green = 0xA9;
fitted_palette[1].blue = 0xA9;
fitted_palette[2].red = 0x55;
fitted_palette[2].green = 0x55;
fitted_palette[2].blue = 0x55;
}
for (i = 0; i < *num_colors; i++) {
shade_index = colors - 1 - palette[i].red / interval;
if (set_indices[shade_index]) {
free(fitted_palette);
free(set_indices);
return false;
}
fitted_palette[shade_index] = palette[i];
set_indices[shade_index] = true;
}
for (i = 0; i < colors; i++)
palette[i] = fitted_palette[i];
*num_colors = colors;
free(fitted_palette);
free(set_indices);
return true;
}
/* A combined struct is needed to sort csolors in order of luminance. */
struct ColorWithLuminance {
png_color color;
int luminance;
};
static int compare_luminance(void const *a, void const *b)
{
const struct ColorWithLuminance *x, *y;
x = (const struct ColorWithLuminance *)a;
y = (const struct ColorWithLuminance *)b;
return y->luminance - x->luminance;
}
static void order_color_palette(png_color *palette, int num_colors)
{
int i;
struct ColorWithLuminance *palette_with_luminance =
malloc(sizeof(*palette_with_luminance) * num_colors);
if (!palette_with_luminance)
err("%s: Failed to allocate memory for palette", __func__);
for (i = 0; i < num_colors; i++) {
/*
* Normally this would be done with floats, but since it's only
* used for comparison, we might as well use integer math.
*/
palette_with_luminance[i].color = palette[i];
palette_with_luminance[i].luminance = 2126 * palette[i].red +
7152 * palette[i].green +
722 * palette[i].blue;
}
qsort(palette_with_luminance, num_colors,
sizeof(*palette_with_luminance), compare_luminance);
for (i = 0; i < num_colors; i++)
palette[i] = palette_with_luminance[i].color;
free(palette_with_luminance);
}
static void put_raw_image_pixel(struct RawIndexedImage *raw_image,
const struct PNGImage *img,
int *value_index, int x, int y,
png_color const *palette,
int colors_in_palette);
static struct RawIndexedImage
*processed_rgba_png_to_raw(const struct PNGImage *img,
png_color const *palette,
int colors_in_palette)
{
struct RawIndexedImage *raw_image;
int x, y, value_index;
raw_image = create_raw_image(img->width, img->height, colors);
set_raw_image_palette(raw_image, palette, colors_in_palette);
for (y = 0; y < img->height; y++) {
x = raw_image->width - 1;
value_index = img->width * 4 - 1;
while (x >= 0) {
put_raw_image_pixel(raw_image, img,
&value_index, x, y,
palette, colors_in_palette);
x--;
}
}
return raw_image;
}
static uint8_t palette_index_of(png_color const *palette,
int num_colors, png_color const *color);
static void put_raw_image_pixel(struct RawIndexedImage *raw_image,
const struct PNGImage *img,
int *value_index, int x, int y,
png_color const *palette,
int colors_in_palette)
{
png_color pixel_color;
png_byte alpha;
alpha = img->data[y][*value_index];
if (alpha == 0) {
raw_image->data[y][x] = 0;
*value_index -= 4;
} else {
(*value_index)--;
pixel_color.blue = img->data[y][(*value_index)--];
pixel_color.green = img->data[y][(*value_index)--];
pixel_color.red = img->data[y][(*value_index)--];
raw_image->data[y][x] = palette_index_of(palette,
colors_in_palette,
&pixel_color);
}
}
static uint8_t palette_index_of(png_color const *palette,
int num_colors, png_color const *color)
{
uint8_t i;
for (i = 0; i < num_colors; i++) {
if (palette[i].red == color->red &&
palette[i].green == color->green &&
palette[i].blue == color->blue) {
return i;
}
}
errx("The input PNG file contains colors that don't appear in its embedded palette.");
}
static void read_png(struct PNGImage *img)
{
int y;
png_read_update_info(img->png, img->info);
img->data = malloc(sizeof(*img->data) * img->height);
if (!img->data)
err("%s: Failed to allocate memory for image data",
__func__);
for (y = 0; y < img->height; y++) {
img->data[y] = malloc(png_get_rowbytes(img->png, img->info));
if (!img->data[y])
err("%s: Failed to allocate memory for image data",
__func__);
}
png_read_image(img->png, img->data);
png_read_end(img->png, img->info);
}
static struct RawIndexedImage *create_raw_image(int width, int height,
int num_colors)
{
struct RawIndexedImage *raw_image;
int y;
raw_image = malloc(sizeof(*raw_image));
if (!raw_image)
err("%s: Failed to allocate memory for raw image",
__func__);
raw_image->width = width;
raw_image->height = height;
raw_image->num_colors = num_colors;
raw_image->palette = malloc(sizeof(*raw_image->palette) * num_colors);
if (!raw_image->palette)
err("%s: Failed to allocate memory for raw image palette",
__func__);
raw_image->data = malloc(sizeof(*raw_image->data) * height);
if (!raw_image->data)
err("%s: Failed to allocate memory for raw image data",
__func__);
for (y = 0; y < height; y++) {
raw_image->data[y] = malloc(sizeof(*raw_image->data[y])
* width);
if (!raw_image->data[y])
err("%s: Failed to allocate memory for raw image data",
__func__);
}
return raw_image;
}
static void set_raw_image_palette(struct RawIndexedImage *raw_image,
png_color const *palette, int num_colors)
{
int i;
if (num_colors > raw_image->num_colors) {
errx("Too many colors in input PNG file's palette to fit into a %d-bit palette (%d in input palette, max %d).",
raw_image->num_colors >> 1,
num_colors, raw_image->num_colors);
}
for (i = 0; i < num_colors; i++) {
raw_image->palette[i].red = palette[i].red;
raw_image->palette[i].green = palette[i].green;
raw_image->palette[i].blue = palette[i].blue;
}
for (i = num_colors; i < raw_image->num_colors; i++) {
raw_image->palette[i].red = 0;
raw_image->palette[i].green = 0;
raw_image->palette[i].blue = 0;
}
}
static void get_text(const struct PNGImage *img,
struct ImageOptions *png_options)
{
png_text *text;
int i, numtxts, numremoved;
png_get_text(img->png, img->info, &text, &numtxts);
for (i = 0; i < numtxts; i++) {
if (strcmp(text[i].key, "h") == 0 && !*text[i].text) {
png_options->horizontal = true;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "x") == 0) {
png_options->trim = strtoul(text[i].text, NULL, 0);
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "t") == 0) {
png_options->tilemapfile = text[i].text;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "T") == 0 && !*text[i].text) {
png_options->tilemapout = true;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "a") == 0) {
png_options->attrmapfile = text[i].text;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "A") == 0 && !*text[i].text) {
png_options->attrmapout = true;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "p") == 0) {
png_options->palfile = text[i].text;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
} else if (strcmp(text[i].key, "P") == 0 && !*text[i].text) {
png_options->palout = true;
png_free_data(img->png, img->info, PNG_FREE_TEXT, i);
}
}
/*
* TODO: Remove this and simply change the warning function not to warn
* instead.
*/
for (i = 0, numremoved = 0; i < numtxts; i++) {
if (text[i].key == NULL)
numremoved++;
text[i].key = text[i + numremoved].key;
text[i].text = text[i + numremoved].text;
text[i].compression = text[i + numremoved].compression;
}
png_set_text(img->png, img->info, text, numtxts - numremoved);
}
static void set_text(const struct PNGImage *img,
const struct ImageOptions *png_options)
{
png_text *text;
char buffer[3];
text = malloc(sizeof(*text));
if (!text)
err("%s: Failed to allocate memory for PNG text",
__func__);
if (png_options->horizontal) {
text[0].key = "h";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (png_options->trim) {
text[0].key = "x";
snprintf(buffer, 3, "%d", png_options->trim);
text[0].text = buffer;
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (*png_options->tilemapfile) {
text[0].key = "t";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (png_options->tilemapout) {
text[0].key = "T";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (*png_options->attrmapfile) {
text[0].key = "a";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (png_options->attrmapout) {
text[0].key = "A";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (*png_options->palfile) {
text[0].key = "p";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
if (png_options->palout) {
text[0].key = "P";
text[0].text = "";
text[0].compression = PNG_TEXT_COMPRESSION_NONE;
png_set_text(img->png, img->info, text, 1);
}
free(text);
}
static void free_png_data(const struct PNGImage *img)
{
int y;
for (y = 0; y < img->height; y++)
free(img->data[y]);
free(img->data);
}

359
src/gfx/pal_packing.cpp Normal file
View File

@@ -0,0 +1,359 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2022, Eldred Habert and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include "gfx/pal_packing.hpp"
#include <assert.h>
#include <bitset>
#include <inttypes.h>
#include <numeric>
#include <optional>
#include <queue>
#include <tuple>
#include <type_traits>
#include <unordered_set>
#include <vector>
#include "gfx/main.hpp"
#include "gfx/proto_palette.hpp"
using std::swap;
namespace packing {
// The solvers here are picked from the paper at http://arxiv.org/abs/1605.00558:
// "Algorithms for the Pagination Problem, a Bin Packing with Overlapping Items"
// Their formulation of the problem consists in packing "tiles" into "pages"; here is a
// correspondence table for our application of it:
// Paper | RGBGFX
// ------+-------
// Tile | Proto-palette
// Page | Palette
/**
* A reference to a proto-palette, and attached attributes for sorting purposes
*/
struct ProtoPalAttrs {
size_t const palIndex;
/**
* Pages from which we are banned (to prevent infinite loops)
* This is dynamic because we wish not to hard-cap the amount of palettes
*/
std::vector<bool> bannedPages;
ProtoPalAttrs(size_t index) : palIndex(index) {}
bool isBannedFrom(size_t index) const {
return index < bannedPages.size() && bannedPages[index];
}
void banFrom(size_t index) {
if (bannedPages.size() <= index) {
bannedPages.resize(index + 1);
}
bannedPages[index] = true;
}
};
/**
* A collection of proto-palettes assigned to a palette
* Does not contain the actual color indices because we need to be able to remove elements
*/
class AssignedProtos {
// We leave room for emptied slots to avoid copying the structs around on removal
std::vector<std::optional<ProtoPalAttrs>> _assigned;
// For resolving proto-palette indices
std::vector<ProtoPalette> const &_protoPals;
public:
template<typename... Ts>
AssignedProtos(decltype(_protoPals) protoPals, Ts &&...elems)
: _assigned{std::forward<Ts>(elems)...}, _protoPals{protoPals} {}
private:
template<typename Inner, template<typename> typename Constness>
class Iter {
public:
friend class AssignedProtos;
// For `iterator_traits`
using difference_type = typename std::iterator_traits<Inner>::difference_type;
using value_type = ProtoPalAttrs;
using pointer = Constness<value_type> *;
using reference = Constness<value_type> &;
using iterator_category = std::input_iterator_tag;
private:
Constness<decltype(_assigned)> *_array = nullptr;
Inner _iter{};
Iter(decltype(_array) array, decltype(_iter) &&iter) : _array(array), _iter(iter) {
skipEmpty();
}
void skipEmpty() {
while (_iter != _array->end() && !(*_iter).has_value()) {
++_iter;
}
}
public:
Iter() = default;
bool operator==(Iter const &other) const { return _iter == other._iter; }
bool operator!=(Iter const &other) const { return !(*this == other); }
Iter &operator++() {
++_iter;
skipEmpty();
return *this;
}
Iter operator++(int) {
Iter it = *this;
++(*this);
return it;
}
reference operator*() const {
assert((*_iter).has_value());
return **_iter;
}
pointer operator->() const {
return &(**this); // Invokes the operator above, not quite a no-op!
}
friend void swap(Iter &lhs, Iter &rhs) {
swap(lhs._array, rhs._array);
swap(lhs._iter, rhs._iter);
}
};
public:
using iterator = Iter<decltype(_assigned)::iterator, std::remove_const_t>;
iterator begin() { return iterator{&_assigned, _assigned.begin()}; }
iterator end() { return iterator{&_assigned, _assigned.end()}; }
using const_iterator = Iter<decltype(_assigned)::const_iterator, std::add_const_t>;
const_iterator begin() const { return const_iterator{&_assigned, _assigned.begin()}; }
const_iterator end() const { return const_iterator{&_assigned, _assigned.end()}; }
/**
* Assigns a new ProtoPalAttrs in a free slot, assuming there is one
* Args are passed to the `ProtoPalAttrs`'s constructor
*/
template<typename... Ts>
auto assign(Ts &&...args) {
auto freeSlot = std::find_if_not(
_assigned.begin(), _assigned.end(),
[](std::optional<ProtoPalAttrs> const &slot) { return slot.has_value(); });
if (freeSlot == _assigned.end()) { // We are full, use a new slot
_assigned.emplace_back(std::forward<Ts>(args)...);
} else { // Reuse a free slot
(*freeSlot).emplace(std::forward<Ts>(args)...);
}
return freeSlot;
}
void remove(iterator const &iter) {
(*iter._iter).reset(); // This time, we want to access the `optional` itself
}
void clear() { _assigned.clear(); }
/**
* Computes the "relative size" of a proto-palette on this palette
*/
double relSizeOf(ProtoPalette const &protoPal) const {
return std::transform_reduce(
protoPal.begin(), protoPal.end(), .0, std::plus<>(), [this](uint16_t color) {
// NOTE: The paper and the associated code disagree on this: the code has
// this `1 +`, whereas the paper does not; its lack causes a division by 0
// if the symbol is not found anywhere, so I'm assuming the paper is wrong.
return 1.
/ (1
+ std::count_if(
begin(), end(), [this, &color](ProtoPalAttrs const &attrs) {
ProtoPalette const &pal = _protoPals[attrs.palIndex];
return std::find(pal.begin(), pal.end(), color) != pal.end();
}));
});
}
private:
std::unordered_set<uint16_t> &uniqueColors() const {
// We check for *distinct* colors by stuffing them into a `set`; this should be
// faster than "back-checking" on every element (O(n²))
//
// TODO: calc84maniac suggested another approach; try implementing it, see if it
// performs better:
// > So basically you make a priority queue that takes iterators into each of your sets
// (paired with end iterators so you'll know where to stop), and the comparator tests the
// values pointed to by each iterator > Then each iteration you pop from the queue,
// optionally add one to your count, increment the iterator and push it back into the queue
// if it didn't reach the end > and you do this until the priority queue is empty
static std::unordered_set<uint16_t> colors;
colors.clear();
for (ProtoPalAttrs const &attrs : *this) {
for (uint16_t color : _protoPals[attrs.palIndex]) {
colors.insert(color);
}
}
return colors;
}
public:
/**
* Returns the number of distinct colors
*/
size_t volume() const { return uniqueColors().size(); }
bool canFit(ProtoPalette const &protoPal) const {
auto &colors = uniqueColors();
for (uint16_t color : protoPal) {
colors.insert(color);
}
return colors.size() <= 4;
}
};
std::tuple<DefaultInitVec<size_t>, size_t>
overloadAndRemove(std::vector<ProtoPalette> const &protoPalettes) {
options.verbosePrint("Paginating palettes using \"overload-and-remove\" strategy...\n");
struct Iota {
using value_type = size_t;
using difference_type = size_t;
using pointer = value_type const *;
using reference = value_type const &;
using iterator_category = std::input_iterator_tag;
// Use aggregate init etc.
value_type i;
bool operator!=(Iota const &other) { return i != other.i; }
reference operator*() const { return i; }
pointer operator->() const { return &i; }
Iota operator++() {
++i;
return *this;
}
Iota operator++(int) {
Iota copy = *this;
++i;
return copy;
}
};
// Begin with all proto-palettes queued up for insertion
std::queue queue(std::deque<ProtoPalAttrs>(Iota{0}, Iota{protoPalettes.size()}));
// Begin with no pages
std::vector<AssignedProtos> assignments{};
for (; !queue.empty(); queue.pop()) {
ProtoPalAttrs const &attrs = queue.front(); // Valid until the `queue.pop()`
ProtoPalette const &protoPal = protoPalettes[attrs.palIndex];
size_t bestPalIndex = assignments.size();
// We're looking for a palette where the proto-palette's relative size is less than
// its actual size; so only overwrite the "not found" index on meeting that criterion
double bestRelSize = protoPal.size();
for (size_t i = 0; i < assignments.size(); ++i) {
// Skip the page if this one is banned from it
if (attrs.isBannedFrom(i)) {
continue;
}
options.verbosePrint("%zu: Rel size: %f (size = %zu)\n", i,
assignments[i].relSizeOf(protoPal), protoPal.size());
if (assignments[i].relSizeOf(protoPal) < bestRelSize) {
bestPalIndex = i;
}
}
if (bestPalIndex == assignments.size()) {
// Found nowhere to put it, create a new page containing just that one
assignments.emplace_back(protoPalettes, std::move(attrs));
} else {
auto &bestPal = assignments[bestPalIndex];
// Add the color to that palette
bestPal.assign(std::move(attrs));
// If this overloads the palette, get it back to normal (if possible)
while (bestPal.volume() > 4) {
options.verbosePrint("Palette %zu is overloaded! (%zu > 4)\n", bestPalIndex,
bestPal.volume());
// Look for a proto-pal minimizing "efficiency" (size / rel_size)
auto efficiency = [&bestPal](ProtoPalette const &pal) {
return pal.size() / bestPal.relSizeOf(pal);
};
auto [minEfficiencyIter, maxEfficiencyIter] =
std::minmax_element(bestPal.begin(), bestPal.end(),
[&efficiency, &protoPalettes](ProtoPalAttrs const &lhs,
ProtoPalAttrs const &rhs) {
return efficiency(protoPalettes[lhs.palIndex])
< efficiency(protoPalettes[rhs.palIndex]);
});
// All efficiencies are identical iff min equals max
// TODO: maybe not ideal to re-compute these two?
// TODO: yikes for float comparison! I *think* this threshold is OK?
if (efficiency(protoPalettes[maxEfficiencyIter->palIndex])
- efficiency(protoPalettes[minEfficiencyIter->palIndex])
< .001) {
break;
}
// Remove the proto-pal with minimal efficiency
queue.emplace(std::move(*minEfficiencyIter));
queue.back().banFrom(bestPalIndex); // Ban it from this palette
bestPal.remove(minEfficiencyIter);
}
}
}
// Deal with palettes still overloaded, by emptying them
for (AssignedProtos &pal : assignments) {
if (pal.volume() > 4) {
for (ProtoPalAttrs &attrs : pal) {
queue.emplace(std::move(attrs));
}
pal.clear();
}
}
// Place back any proto-palettes now in the queue via first-fit
while (!queue.empty()) {
ProtoPalAttrs const &attrs = queue.front();
ProtoPalette const &protoPal = protoPalettes[attrs.palIndex];
auto iter =
std::find_if(assignments.begin(), assignments.end(),
[&protoPal](AssignedProtos const &pal) { return pal.canFit(protoPal); });
if (iter == assignments.end()) { // No such page, create a new one
options.verbosePrint("Adding new palette for overflow\n");
assignments.emplace_back(protoPalettes, std::move(attrs));
} else {
options.verbosePrint("Assigning overflow to palette %zu\n", iter - assignments.begin());
iter->assign(std::move(attrs));
}
queue.pop();
}
// Deal with any empty palettes left over from the "un-overloading" step
// TODO (can there be any?)
if (options.beVerbose) {
for (auto &&assignment : assignments) {
options.verbosePrint("{ ");
for (auto &&attrs : assignment) {
for (auto &&colorIndex : protoPalettes[attrs.palIndex]) {
options.verbosePrint("%04" PRIx16 ", ", colorIndex);
}
}
options.verbosePrint("} (%zu)\n", assignment.volume());
}
}
DefaultInitVec<size_t> mappings(protoPalettes.size());
for (size_t i = 0; i < assignments.size(); ++i) {
for (ProtoPalAttrs const &attrs : assignments[i]) {
mappings[attrs.palIndex] = i;
}
}
return {mappings, assignments.size()};
}
} // namespace packing

64
src/gfx/pal_sorting.cpp Normal file
View File

@@ -0,0 +1,64 @@
#include "gfx/pal_sorting.hpp"
#include <algorithm>
#include <png.h>
#include <vector>
#include "helpers.h"
#include "gfx/main.hpp"
namespace sorting {
void indexed(std::vector<Palette> &palettes, int palSize, png_color const *palRGB,
png_byte *palAlpha) {
options.verbosePrint("Sorting palettes using embedded palette...\n");
for (Palette &pal : palettes) {
std::sort(pal.begin(), pal.end(), [&](uint16_t lhs, uint16_t rhs) {
// Iterate through the PNG's palette, looking for either of the two
for (int i = 0; i < palSize; ++i) {
if (palAlpha && palAlpha[i])
continue;
auto const &c = palRGB[i];
uint16_t cgbColor = c.red >> 3 | (c.green >> 3) << 5 | (c.blue >> 3) << 10;
// Return whether lhs < rhs
if (cgbColor == rhs) {
return false;
}
if (cgbColor == lhs) {
return true;
}
}
unreachable_(); // This should not be possible
});
}
}
void grayscale(std::vector<Palette> &palettes) {
options.verbosePrint("Sorting grayscale-only palettes...\n");
for (Palette &pal : palettes) {
(void)pal; // TODO
}
}
static unsigned int legacyLuminance(uint16_t color) {
uint8_t red = color & 0b11111;
uint8_t green = color >> 5 & 0b11111;
uint8_t blue = color >> 10;
return 2126 * red + 7152 * green + 722 * blue;
}
void rgb(std::vector<Palette> &palettes) {
options.verbosePrint("Sorting palettes by \"\"\"luminance\"\"\"...\n");
for (Palette &pal : palettes) {
std::sort(pal.begin(), pal.end(), [](uint16_t lhs, uint16_t rhs) {
return legacyLuminance(lhs) < legacyLuminance(rhs);
});
}
}
} // namespace sorting

79
src/gfx/proto_palette.cpp Normal file
View File

@@ -0,0 +1,79 @@
/*
* This file is part of RGBDS.
*
* Copyright (c) 2022, Eldred Habert and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include "gfx/proto_palette.hpp"
#include <algorithm>
#include <array>
#include <stddef.h>
#include <stdint.h>
bool ProtoPalette::add(uint16_t color) {
size_t i = 0;
// Seek the first slot greater than our color
// (A linear search is better because we don't store the array size,
// and there are very few slots anyway)
while (_colorIndices[i] < color) {
++i;
if (i == _colorIndices.size())
return false; // EOF
}
// If we found ourselves, great!
if (_colorIndices[i] == color)
return true;
// Swap entries until the end
while (_colorIndices[i] != UINT16_MAX) {
std::swap(_colorIndices[i], color);
++i;
if (i == _colorIndices.size())
return false; // Oh well
}
// Write that last one into the new slot
_colorIndices[i] = color;
return true;
}
ProtoPalette::ComparisonResult ProtoPalette::compare(ProtoPalette const &other) const {
auto ours = _colorIndices.begin(), theirs = other._colorIndices.begin();
bool weBigger = true, theyBigger = true;
while (ours != _colorIndices.end() && theirs != other._colorIndices.end()) {
if (*ours == *theirs) {
++ours;
++theirs;
} else if (*ours < *theirs) {
++ours;
theyBigger = false;
} else {
++theirs;
weBigger = false;
}
}
weBigger &= ours == _colorIndices.end();
theyBigger &= theirs == other._colorIndices.end();
return theyBigger ? THEY_BIGGER : (weBigger ? WE_BIGGER : NEITHER);
}
ProtoPalette &ProtoPalette::operator=(ProtoPalette const &other) {
_colorIndices = other._colorIndices;
return *this;
}
size_t ProtoPalette::size() const {
return std::distance(begin(), end());
}
auto ProtoPalette::begin() const -> decltype(_colorIndices)::const_iterator {
return _colorIndices.begin();
}
auto ProtoPalette::end() const -> decltype(_colorIndices)::const_iterator {
return std::find(_colorIndices.begin(), _colorIndices.end(), UINT16_MAX);
}