// SPDX-License-Identifier: MIT #include "link/assign.hpp" #include #include #include #include #include #include #include "diagnostics.hpp" #include "helpers.hpp" #include "itertools.hpp" #include "linkdefs.hpp" #include "platform.hpp" #include "link/main.hpp" #include "link/output.hpp" #include "link/section.hpp" #include "link/symbol.hpp" #include "link/warning.hpp" struct MemoryLocation { uint16_t address; uint32_t bank; }; struct FreeSpace { uint16_t address; uint16_t size; }; // Table of free space for each bank std::vector> memory[SECTTYPE_INVALID]; uint64_t nbSectionsToAssign; // Init the free space-modelling structs static void initFreeSpace() { for (SectionType type : EnumSeq(SECTTYPE_INVALID)) { memory[type].resize(nbbanks(type)); for (std::deque &bankMem : memory[type]) { bankMem.push_back({ .address = sectionTypeInfo[type].startAddr, .size = sectionTypeInfo[type].size, }); } } } // Assigns a section to a given memory location static void assignSection(Section §ion, MemoryLocation const &location) { // Propagate the assigned location to all UNIONs/FRAGMENTs // so `jr` patches in them will have the correct offset for (Section *next = §ion; next != nullptr; next = next->nextu.get()) { next->org = location.address; next->bank = location.bank; } nbSectionsToAssign--; out_AddSection(section); } // Checks whether a given location is suitable for placing a given section // This checks not only that the location has enough room for the section, but // also that the constraints (alignment...) are respected. static bool isLocationSuitable( Section const §ion, FreeSpace const &freeSpace, MemoryLocation const &location ) { if (section.isAddressFixed && section.org != location.address) { return false; } if (section.isAlignFixed && ((location.address - section.alignOfs) & section.alignMask)) { return false; } if (location.address < freeSpace.address) { return false; } return location.address + section.size <= freeSpace.address + freeSpace.size; } // Returns a suitable free space index into `memory[section->type]` at which to place the given // section, or -1 if none was found. static ssize_t getPlacement(Section const §ion, MemoryLocation &location) { SectionTypeInfo const &typeInfo = sectionTypeInfo[section.type]; static uint16_t curScrambleROM = 0; static uint8_t curScrambleWRAM = 0; static int8_t curScrambleSRAM = 0; // Determine which bank we should start searching in if (section.isBankFixed) { location.bank = section.bank; } else if (scrambleROMX && section.type == SECTTYPE_ROMX) { if (curScrambleROM < 1) { curScrambleROM = scrambleROMX; } location.bank = curScrambleROM--; } else if (scrambleWRAMX && section.type == SECTTYPE_WRAMX) { if (curScrambleWRAM < 1) { curScrambleWRAM = scrambleWRAMX; } location.bank = curScrambleWRAM--; } else if (scrambleSRAM && section.type == SECTTYPE_SRAM) { if (curScrambleSRAM < 0) { curScrambleSRAM = scrambleSRAM; } location.bank = curScrambleSRAM--; } else { location.bank = typeInfo.firstBank; } for (;;) { // Switch to the beginning of the next bank std::deque &bankMem = memory[section.type][location.bank - typeInfo.firstBank]; size_t spaceIdx = 0; if (spaceIdx < bankMem.size()) { location.address = bankMem[spaceIdx].address; } // Process locations in that bank while (spaceIdx < bankMem.size()) { // If that location is OK, return it if (isLocationSuitable(section, bankMem[spaceIdx], location)) { return spaceIdx; } // Go to the next *possible* location if (section.isAddressFixed) { // If the address is fixed, there can be only // one candidate block per bank; if we already // reached it, give up. if (location.address < section.org) { location.address = section.org; } else { break; // Try again in next bank } } else if (section.isAlignFixed) { // Move to next aligned location // Move back to alignment boundary location.address -= section.alignOfs; // Ensure we're there (e.g. on first check) location.address &= ~section.alignMask; // Go to next align boundary and add offset location.address += section.alignMask + 1 + section.alignOfs; } else { // Any location is fine, so, next free block spaceIdx++; if (spaceIdx < bankMem.size()) { location.address = bankMem[spaceIdx].address; } } // If that location is past the current block's end, // go forwards until that is no longer the case. while (spaceIdx < bankMem.size() && location.address >= bankMem[spaceIdx].address + bankMem[spaceIdx].size) { spaceIdx++; } // Try again with the new location/free space combo } // Try again in the next bank, if one is available. // Try scrambled banks in descending order until no bank in the scrambled range is // available. Otherwise, try in ascending order. if (section.isBankFixed) { return -1; } else if (scrambleROMX && section.type == SECTTYPE_ROMX && location.bank <= scrambleROMX) { if (location.bank > typeInfo.firstBank) { location.bank--; } else if (scrambleROMX < typeInfo.lastBank) { location.bank = scrambleROMX + 1; } else { return -1; } } else if (scrambleWRAMX && section.type == SECTTYPE_WRAMX && location.bank <= scrambleWRAMX) { if (location.bank > typeInfo.firstBank) { location.bank--; } else if (scrambleWRAMX < typeInfo.lastBank) { location.bank = scrambleWRAMX + 1; } else { return -1; } } else if (scrambleSRAM && section.type == SECTTYPE_SRAM && location.bank <= scrambleSRAM) { if (location.bank > typeInfo.firstBank) { location.bank--; } else if (scrambleSRAM < typeInfo.lastBank) { location.bank = scrambleSRAM + 1; } else { return -1; } } else if (location.bank < typeInfo.lastBank) { location.bank++; } else { return -1; } } } // Places a section in a suitable location, or error out if it fails to. // Due to the implemented algorithm, this should be called with sections of decreasing size! static void placeSection(Section §ion) { // Specially handle 0-byte SECTIONs, as they can't overlap anything if (section.size == 0) { // Unless the SECTION's address was fixed, the starting address // is fine for any alignment, as checked in sect_DoSanityChecks. MemoryLocation location = { .address = section.isAddressFixed ? section.org : sectionTypeInfo[section.type].startAddr, .bank = section.isBankFixed ? section.bank : sectionTypeInfo[section.type].firstBank, }; assignSection(section, location); return; } // Place section using first-fit decreasing algorithm // https://en.wikipedia.org/wiki/Bin_packing_problem#First-fit_algorithm MemoryLocation location; if (ssize_t spaceIdx = getPlacement(section, location); spaceIdx != -1) { std::deque &bankMem = memory[section.type][location.bank - sectionTypeInfo[section.type].firstBank]; FreeSpace &freeSpace = bankMem[spaceIdx]; assignSection(section, location); // Update the free space uint16_t sectionEnd = section.org + section.size; bool noLeftSpace = freeSpace.address == section.org; bool noRightSpace = freeSpace.address + freeSpace.size == sectionEnd; if (noLeftSpace && noRightSpace) { // The free space is entirely deleted bankMem.erase(bankMem.begin() + spaceIdx); } else if (!noLeftSpace && !noRightSpace) { // The free space is split in two // Append the new space after the original one uint16_t size = static_cast(freeSpace.address + freeSpace.size - sectionEnd); bankMem.insert(bankMem.begin() + spaceIdx + 1, {.address = sectionEnd, .size = size}); // **`freeSpace` cannot be reused from this point on, because `bankMem.insert` // invalidates all references to itself!** // Resize the original space (address is unmodified) bankMem[spaceIdx].size = section.org - bankMem[spaceIdx].address; } else { // The amount of free spaces doesn't change: resize! freeSpace.size -= section.size; if (noLeftSpace) { // The free space is moved *and* resized freeSpace.address += section.size; } } return; } // Please adjust depending on longest message below char where[64]; if (section.isBankFixed && nbbanks(section.type) != 1) { if (section.isAddressFixed) { snprintf( where, sizeof(where), "at $%02" PRIx32 ":%04" PRIx16, section.bank, section.org ); } else if (section.isAlignFixed) { snprintf( where, sizeof(where), "in bank $%02" PRIx32 " with align mask $%" PRIx16, section.bank, static_cast(~section.alignMask) ); } else { snprintf(where, sizeof(where), "in bank $%02" PRIx32, section.bank); } } else { if (section.isAddressFixed) { snprintf(where, sizeof(where), "at address $%04" PRIx16, section.org); } else if (section.isAlignFixed) { snprintf( where, sizeof(where), "with align mask $%" PRIx16 " and offset $%" PRIx16, static_cast(~section.alignMask), section.alignOfs ); } else { strcpy(where, "anywhere"); } } // If a section failed to go to several places, nothing we can report if (!section.isBankFixed || !section.isAddressFixed) { fatal( "Unable to place \"%s\" (%s section) %s", section.name.c_str(), sectionTypeInfo[section.type].name.c_str(), where ); } // If the section just can't fit the bank, report that else if (section.org + section.size > endaddr(section.type) + 1) { fatal( "Unable to place \"%s\" (%s section) %s: section runs past end of region ($%04x > " "$%04x)", section.name.c_str(), sectionTypeInfo[section.type].name.c_str(), where, section.org + section.size, endaddr(section.type) + 1 ); } // Otherwise there is overlap with another section else { fatal( "Unable to place \"%s\" (%s section) %s: section overlaps with \"%s\"", section.name.c_str(), sectionTypeInfo[section.type].name.c_str(), where, out_OverlappingSection(section)->name.c_str() ); } } // clang-format off: vertically align values static constexpr uint8_t BANK_CONSTRAINED = 1 << 2; static constexpr uint8_t ORG_CONSTRAINED = 1 << 1; static constexpr uint8_t ALIGN_CONSTRAINED = 1 << 0; // clang-format on static std::deque
unassignedSections[1 << 3]; // Categorize a section depending on how constrained it is. // This is so the most-constrained sections are placed first. static void categorizeSection(Section §ion) { uint8_t constraints = 0; if (section.isBankFixed) { constraints |= BANK_CONSTRAINED; } if (section.isAddressFixed) { constraints |= ORG_CONSTRAINED; } // Can't have both! else if (section.isAlignFixed) { constraints |= ALIGN_CONSTRAINED; } std::deque
§ions = unassignedSections[constraints]; auto pos = sections.begin(); // Insert section while keeping the list sorted by decreasing size while (pos != sections.end() && (*pos)->size > section.size) { pos++; } sections.insert(pos, §ion); nbSectionsToAssign++; } void assign_AssignSections() { verbosePrint("Beginning assignment...\n"); // Initialize assignment initFreeSpace(); // Generate linked lists of sections to assign nbSectionsToAssign = 0; sect_ForEach(categorizeSection); // Place sections, starting with the most constrained // Specially process fully-constrained sections because of overlaying verbosePrint("Assigning bank+org-constrained...\n"); for (Section *section : unassignedSections[BANK_CONSTRAINED | ORG_CONSTRAINED]) { placeSection(*section); } // If all sections were fully constrained, we have nothing left to do if (!nbSectionsToAssign) { return; } // Overlaying requires only fully-constrained sections verbosePrint("Assigning other sections...\n"); if (overlayFileName) { fputs("FATAL: All sections must be fixed when using an overlay file", stderr); uint8_t nbSections = 0; for (int8_t constraints = BANK_CONSTRAINED | ALIGN_CONSTRAINED; constraints >= 0; constraints--) { for (Section *section : unassignedSections[constraints]) { fprintf(stderr, "%c \"%s\"", nbSections == 0 ? ';' : ',', section->name.c_str()); nbSections++; if (nbSections == 10) { goto max_out; // Can't `break` out of a nested loop } } } max_out: if (nbSectionsToAssign != nbSections) { fprintf(stderr, " and %" PRIu64 " more", nbSectionsToAssign - nbSections); } fprintf(stderr, " %sn't\n", nbSectionsToAssign == 1 ? "is" : "are"); exit(1); } // Assign all remaining sections by decreasing constraint order for (int8_t constraints = BANK_CONSTRAINED | ALIGN_CONSTRAINED; constraints >= 0; constraints--) { for (Section *section : unassignedSections[constraints]) { placeSection(*section); } if (!nbSectionsToAssign) { return; } } unreachable_(); // LCOV_EXCL_LINE }