Files
rgbds/src/asm/section.cpp
2024-03-21 15:13:10 -04:00

1016 lines
27 KiB
C++

/* SPDX-License-Identifier: MIT */
#include "asm/section.hpp"
#include <algorithm>
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <optional>
#include <stack>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "asm/fstack.hpp"
#include "asm/lexer.hpp"
#include "asm/main.hpp"
#include "asm/output.hpp"
#include "asm/rpn.hpp"
#include "asm/symbol.hpp"
#include "asm/warning.hpp"
uint8_t fillByte;
struct UnionStackEntry {
uint32_t start;
uint32_t size;
};
struct SectionStackEntry {
Section *section;
Section *loadSection;
std::optional<std::string> scope; // Section's symbol scope
uint32_t offset;
int32_t loadOffset;
std::stack<UnionStackEntry> unionStack;
};
std::stack<UnionStackEntry> currentUnionStack;
std::deque<SectionStackEntry> sectionStack;
std::deque<Section> sectionList;
std::unordered_map<std::string, size_t> sectionMap; // Indexes into `sectionList`
uint32_t curOffset; // Offset into the current section (see sect_GetSymbolOffset)
Section *currentSection = nullptr;
static Section *currentLoadSection = nullptr;
std::optional<std::string> currentLoadScope = std::nullopt;
int32_t loadOffset; // Offset into the LOAD section's parent (see sect_GetOutputOffset)
// A quick check to see if we have an initialized section
attr_(warn_unused_result) static bool checksection() {
if (currentSection)
return true;
error("Cannot output data outside of a SECTION\n");
return false;
}
// A quick check to see if we have an initialized section that can contain
// this much initialized data
attr_(warn_unused_result) static bool checkcodesection() {
if (!checksection())
return false;
if (sect_HasData(currentSection->type))
return true;
error(
"Section '%s' cannot contain code or data (not ROM0 or ROMX)\n",
currentSection->name.c_str()
);
return false;
}
attr_(warn_unused_result) static bool checkSectionSize(Section const &sect, uint32_t size) {
uint32_t maxSize = sectionTypeInfo[sect.type].size;
// If the new size is reasonable, keep going
if (size <= maxSize)
return true;
error(
"Section '%s' grew too big (max size = 0x%" PRIX32 " bytes, reached 0x%" PRIX32 ").\n",
sect.name.c_str(),
maxSize,
size
);
return false;
}
// Check if the section has grown too much.
attr_(warn_unused_result) static bool reserveSpace(uint32_t delta_size) {
// This check is here to trap broken code that generates sections that are too big and to
// prevent the assembler from generating huge object files or trying to allocate too much
// memory.
// A check at the linking stage is still necessary.
// If the section has already overflowed, skip the check to avoid erroring out ad nauseam
if (currentSection->size != UINT32_MAX
&& !checkSectionSize(*currentSection, curOffset + loadOffset + delta_size))
// Mark the section as overflowed, to avoid repeating the error
currentSection->size = UINT32_MAX;
if (currentLoadSection && currentLoadSection->size != UINT32_MAX
&& !checkSectionSize(*currentLoadSection, curOffset + delta_size))
currentLoadSection->size = UINT32_MAX;
return currentSection->size != UINT32_MAX
&& (!currentLoadSection || currentLoadSection->size != UINT32_MAX);
}
Section *sect_FindSectionByName(std::string const &name) {
auto search = sectionMap.find(name);
return search != sectionMap.end() ? &sectionList[search->second] : nullptr;
}
#define mask(align) ((1U << (align)) - 1)
#define sectError(...) \
do { \
error(__VA_ARGS__); \
nbSectErrors++; \
} while (0)
static unsigned int mergeSectUnion(
Section &sect, SectionType type, uint32_t org, uint8_t alignment, uint16_t alignOffset
) {
assert(alignment < 16); // Should be ensured by the caller
unsigned int nbSectErrors = 0;
// Unionized sections only need "compatible" constraints, and they end up with the strictest
// combination of both.
if (sect_HasData(type))
sectError("Cannot declare ROM sections as UNION\n");
if (org != (uint32_t)-1) {
// If both are fixed, they must be the same
if (sect.org != (uint32_t)-1 && sect.org != org)
sectError(
"Section already declared as fixed at different address $%04" PRIx32 "\n", sect.org
);
else if (sect.align != 0 && (mask(sect.align) & (org - sect.alignOfs)))
sectError(
"Section already declared as aligned to %u bytes (offset %" PRIu16 ")\n",
1U << sect.align,
sect.alignOfs
);
else
// Otherwise, just override
sect.org = org;
} else if (alignment != 0) {
// Make sure any fixed address given is compatible
if (sect.org != (uint32_t)-1) {
if ((sect.org - alignOffset) & mask(alignment))
sectError(
"Section already declared as fixed at incompatible address $%04" PRIx32 "\n",
sect.org
);
// Check if alignment offsets are compatible
} else if ((alignOffset & mask(sect.align)) != (sect.alignOfs & mask(alignment))) {
sectError(
"Section already declared with incompatible %u"
"-byte alignment (offset %" PRIu16 ")\n",
1U << sect.align,
sect.alignOfs
);
} else if (alignment > sect.align) {
// If the section is not fixed, its alignment is the largest of both
sect.align = alignment;
sect.alignOfs = alignOffset;
}
}
return nbSectErrors;
}
static unsigned int
mergeFragments(Section &sect, uint32_t org, uint8_t alignment, uint16_t alignOffset) {
assert(alignment < 16); // Should be ensured by the caller
unsigned int nbSectErrors = 0;
// Fragments only need "compatible" constraints, and they end up with the strictest
// combination of both.
// The merging is however performed at the *end* of the original section!
if (org != (uint32_t)-1) {
uint16_t curOrg = org - sect.size;
// If both are fixed, they must be the same
if (sect.org != (uint32_t)-1 && sect.org != curOrg)
sectError(
"Section already declared as fixed at incompatible address $%04" PRIx32 "\n",
sect.org
);
else if (sect.align != 0 && (mask(sect.align) & (curOrg - sect.alignOfs)))
sectError(
"Section already declared as aligned to %u bytes (offset %" PRIu16 ")\n",
1U << sect.align,
sect.alignOfs
);
else
// Otherwise, just override
sect.org = curOrg;
} else if (alignment != 0) {
int32_t curOfs = (alignOffset - sect.size) % (1U << alignment);
if (curOfs < 0)
curOfs += 1U << alignment;
// Make sure any fixed address given is compatible
if (sect.org != (uint32_t)-1) {
if ((sect.org - curOfs) & mask(alignment))
sectError(
"Section already declared as fixed at incompatible address $%04" PRIx32 "\n",
sect.org
);
// Check if alignment offsets are compatible
} else if ((curOfs & mask(sect.align)) != (sect.alignOfs & mask(alignment))) {
sectError(
"Section already declared with incompatible %u"
"-byte alignment (offset %" PRIu16 ")\n",
1U << sect.align,
sect.alignOfs
);
} else if (alignment > sect.align) {
// If the section is not fixed, its alignment is the largest of both
sect.align = alignment;
sect.alignOfs = curOfs;
}
}
return nbSectErrors;
}
static void mergeSections(
Section &sect,
SectionType type,
uint32_t org,
uint32_t bank,
uint8_t alignment,
uint16_t alignOffset,
SectionModifier mod
) {
unsigned int nbSectErrors = 0;
if (type != sect.type)
sectError(
"Section already exists but with type %s\n", sectionTypeInfo[sect.type].name.c_str()
);
if (sect.modifier != mod) {
sectError("Section already declared as %s section\n", sectionModNames[sect.modifier]);
} else {
switch (mod) {
case SECTION_UNION:
case SECTION_FRAGMENT:
nbSectErrors += mod == SECTION_UNION
? mergeSectUnion(sect, type, org, alignment, alignOffset)
: mergeFragments(sect, org, alignment, alignOffset);
// Common checks
// If the section's bank is unspecified, override it
if (sect.bank == (uint32_t)-1)
sect.bank = bank;
// If both specify a bank, it must be the same one
else if (bank != (uint32_t)-1 && sect.bank != bank)
sectError("Section already declared with different bank %" PRIu32 "\n", sect.bank);
break;
case SECTION_NORMAL:
sectError("Section already defined previously at ");
sect.src->dump(sect.fileLine);
putc('\n', stderr);
break;
}
}
if (nbSectErrors)
fatalerror(
"Cannot create section \"%s\" (%u error%s)\n",
sect.name.c_str(),
nbSectErrors,
nbSectErrors == 1 ? "" : "s"
);
}
#undef sectError
// Create a new section, not yet in the list.
static Section *createSection(
std::string const &name,
SectionType type,
uint32_t org,
uint32_t bank,
uint8_t alignment,
uint16_t alignOffset,
SectionModifier mod
) {
// Add the new section to the list
Section &sect = sectionList.emplace_back();
sectionMap.emplace(name, sectionMap.size());
sect.name = name;
sect.type = type;
sect.modifier = mod;
sect.src = fstk_GetFileStack();
sect.fileLine = lexer_GetLineNo();
sect.size = 0;
sect.org = org;
sect.bank = bank;
sect.align = alignment;
sect.alignOfs = alignOffset;
// It is only needed to allocate memory for ROM sections.
if (sect_HasData(type))
sect.data.resize(sectionTypeInfo[type].size);
return &sect;
}
// Find a section by name and type. If it doesn't exist, create it.
static Section *getSection(
std::string const &name,
SectionType type,
uint32_t org,
SectionSpec const &attrs,
SectionModifier mod
) {
uint32_t bank = attrs.bank;
uint8_t alignment = attrs.alignment;
uint16_t alignOffset = attrs.alignOfs;
// First, validate parameters, and normalize them if applicable
if (bank != (uint32_t)-1) {
if (type != SECTTYPE_ROMX && type != SECTTYPE_VRAM && type != SECTTYPE_SRAM
&& type != SECTTYPE_WRAMX)
error("BANK only allowed for ROMX, WRAMX, SRAM, or VRAM sections\n");
else if (bank < sectionTypeInfo[type].firstBank || bank > sectionTypeInfo[type].lastBank)
error(
"%s bank value $%04" PRIx32 " out of range ($%04" PRIx32 " to $%04" PRIx32 ")\n",
sectionTypeInfo[type].name.c_str(),
bank,
sectionTypeInfo[type].firstBank,
sectionTypeInfo[type].lastBank
);
} else if (nbbanks(type) == 1) {
// If the section type only has a single bank, implicitly force it
bank = sectionTypeInfo[type].firstBank;
}
if (alignOffset >= 1 << alignment) {
error(
"Alignment offset (%" PRIu16 ") must be smaller than alignment size (%u)\n",
alignOffset,
1U << alignment
);
alignOffset = 0;
}
if (org != (uint32_t)-1) {
if (org < sectionTypeInfo[type].startAddr || org > endaddr(type))
error(
"Section \"%s\"'s fixed address $%04" PRIx32 " is outside of range [$%04" PRIx16
"; $%04" PRIx16 "]\n",
name.c_str(),
org,
sectionTypeInfo[type].startAddr,
endaddr(type)
);
}
if (alignment != 0) {
if (alignment > 16) {
error("Alignment must be between 0 and 16, not %u\n", alignment);
alignment = 16;
}
// It doesn't make sense to have both alignment and org set
uint32_t mask = mask(alignment);
if (org != (uint32_t)-1) {
if ((org - alignOffset) & mask)
error("Section \"%s\"'s fixed address doesn't match its alignment\n", name.c_str());
alignment = 0; // Ignore it if it's satisfied
} else if (sectionTypeInfo[type].startAddr & mask) {
error(
"Section \"%s\"'s alignment cannot be attained in %s\n",
name.c_str(),
sectionTypeInfo[type].name.c_str()
);
alignment = 0; // Ignore it if it's unattainable
org = 0;
} else if (alignment == 16) {
// Treat an alignment of 16 as fixing the address.
alignment = 0;
org = alignOffset;
// The address is known to be valid, since the alignment itself is.
}
}
// Check if another section exists with the same name; merge if yes, otherwise create one
Section *sect = sect_FindSectionByName(name);
if (sect) {
mergeSections(*sect, type, org, bank, alignment, alignOffset, mod);
} else {
sect = createSection(name, type, org, bank, alignment, alignOffset, mod);
}
return sect;
}
// Set the current section
static void changeSection() {
if (!currentUnionStack.empty())
fatalerror("Cannot change the section within a UNION\n");
sym_SetCurrentSymbolScope(std::nullopt);
}
bool Section::isSizeKnown() const {
// SECTION UNION and SECTION FRAGMENT can still grow
if (modifier != SECTION_NORMAL)
return false;
// The current section (or current load section if within one) is still growing
if (this == currentSection || this == currentLoadSection)
return false;
// Any section on the stack is still growing
for (SectionStackEntry &entry : sectionStack) {
if (entry.section && entry.section->name == name)
return false;
}
return true;
}
// Set the current section by name and type
void sect_NewSection(
std::string const &name,
SectionType type,
uint32_t org,
SectionSpec const &attrs,
SectionModifier mod
) {
if (currentLoadSection)
fatalerror("Cannot change the section within a `LOAD` block\n");
for (SectionStackEntry &entry : sectionStack) {
if (entry.section && entry.section->name == name)
fatalerror("Section '%s' is already on the stack\n", name.c_str());
}
Section *sect = getSection(name, type, org, attrs, mod);
changeSection();
curOffset = mod == SECTION_UNION ? 0 : sect->size;
loadOffset = 0; // This is still used when checking for section size overflow!
currentSection = sect;
}
// Set the current section by name and type
void sect_SetLoadSection(
std::string const &name,
SectionType type,
uint32_t org,
SectionSpec const &attrs,
SectionModifier mod
) {
// Important info: currently, UNION and LOAD cannot interact, since UNION is prohibited in
// "code" sections, whereas LOAD is restricted to them.
// Therefore, any interactions are NOT TESTED, so lift either of those restrictions at
// your own peril! ^^
if (!checkcodesection())
return;
if (currentLoadSection) {
error("`LOAD` blocks cannot be nested\n");
return;
}
if (sect_HasData(type)) {
error("`LOAD` blocks cannot create a ROM section\n");
return;
}
if (mod == SECTION_FRAGMENT) {
error("`LOAD FRAGMENT` is not allowed\n");
return;
}
Section *sect = getSection(name, type, org, attrs, mod);
currentLoadScope = sym_GetCurrentSymbolScope();
changeSection();
loadOffset = curOffset - (mod == SECTION_UNION ? 0 : sect->size);
curOffset -= loadOffset;
currentLoadSection = sect;
}
void sect_EndLoadSection() {
if (!currentLoadSection) {
error("Found `ENDL` outside of a `LOAD` block\n");
return;
}
changeSection();
curOffset += loadOffset;
loadOffset = 0;
currentLoadSection = nullptr;
sym_SetCurrentSymbolScope(currentLoadScope);
}
Section *sect_GetSymbolSection() {
return currentLoadSection ? currentLoadSection : currentSection;
}
// The offset into the section above
uint32_t sect_GetSymbolOffset() {
return curOffset;
}
uint32_t sect_GetOutputOffset() {
return curOffset + loadOffset;
}
// Returns how many bytes need outputting for the specified alignment and offset to succeed
uint32_t sect_GetAlignBytes(uint8_t alignment, uint16_t offset) {
Section *sect = sect_GetSymbolSection();
if (!sect)
return 0;
bool isFixed = sect->org != (uint32_t)-1;
// If the section is not aligned, no bytes are needed
// (fixed sections count as being maximally aligned for this purpose)
uint8_t curAlignment = isFixed ? 16 : sect->align;
if (curAlignment == 0)
return 0;
// We need `(pcValue + curOffset + return value) % (1 << alignment) == offset`
uint16_t pcValue = isFixed ? sect->org : sect->alignOfs;
return static_cast<uint16_t>(offset - curOffset - pcValue)
% (1u << std::min(alignment, curAlignment));
}
void sect_AlignPC(uint8_t alignment, uint16_t offset) {
if (!checksection())
return;
Section *sect = sect_GetSymbolSection();
uint32_t alignSize = 1 << alignment; // Size of an aligned "block"
if (sect->org != (uint32_t)-1) {
if ((sect->org + curOffset - offset) % alignSize)
error(
"Section's fixed address fails required alignment (PC = $%04" PRIx32 ")\n",
sect->org + curOffset
);
} else if (sect->align != 0 && (((sect->alignOfs + curOffset) % (1u << sect->align)) - offset) % alignSize) {
error(
"Section's alignment fails required alignment (offset from section start = $%04" PRIx32
")\n",
curOffset
);
} else if (alignment >= 16) {
// Treat an alignment large enough as fixing the address.
// Note that this also ensures that a section's alignment never becomes 16 or greater.
if (alignment > 16) {
error("Alignment must be between 0 and 16, not %u\n", alignment);
}
sect->align = 0; // Reset the alignment, since we're fixing the address.
sect->org = offset - curOffset;
} else if (alignment > sect->align) {
sect->align = alignment;
// We need `(sect->alignOfs + curOffset) % alignSize == offset`
sect->alignOfs = (offset - curOffset) % alignSize;
}
}
static void growSection(uint32_t growth) {
curOffset += growth;
if (curOffset + loadOffset > currentSection->size)
currentSection->size = curOffset + loadOffset;
if (currentLoadSection && curOffset > currentLoadSection->size)
currentLoadSection->size = curOffset;
}
static void writebyte(uint8_t byte) {
currentSection->data[sect_GetOutputOffset()] = byte;
growSection(1);
}
static void writeword(uint16_t b) {
writebyte(b & 0xFF);
writebyte(b >> 8);
}
static void writelong(uint32_t b) {
writebyte(b & 0xFF);
writebyte(b >> 8);
writebyte(b >> 16);
writebyte(b >> 24);
}
static void createPatch(PatchType type, Expression const &expr, uint32_t pcShift) {
out_CreatePatch(type, expr, sect_GetOutputOffset(), pcShift);
}
void sect_StartUnion() {
// Important info: currently, UNION and LOAD cannot interact, since UNION is prohibited in
// "code" sections, whereas LOAD is restricted to them.
// Therefore, any interactions are NOT TESTED, so lift either of those restrictions at
// your own peril! ^^
if (!currentSection) {
error("UNIONs must be inside a SECTION\n");
return;
}
if (sect_HasData(currentSection->type)) {
error("Cannot use UNION inside of ROM0 or ROMX sections\n");
return;
}
currentUnionStack.push({.start = curOffset, .size = 0});
}
static void endUnionMember() {
UnionStackEntry &member = currentUnionStack.top();
uint32_t memberSize = curOffset - member.start;
if (memberSize > member.size)
member.size = memberSize;
curOffset = member.start;
}
void sect_NextUnionMember() {
if (currentUnionStack.empty()) {
error("Found NEXTU outside of a UNION construct\n");
return;
}
endUnionMember();
}
void sect_EndUnion() {
if (currentUnionStack.empty()) {
error("Found ENDU outside of a UNION construct\n");
return;
}
endUnionMember();
curOffset += currentUnionStack.top().size;
currentUnionStack.pop();
}
void sect_CheckUnionClosed() {
if (!currentUnionStack.empty())
error("Unterminated UNION construct\n");
}
// Output an absolute byte
void sect_AbsByte(uint8_t b) {
if (!checkcodesection())
return;
if (!reserveSpace(1))
return;
writebyte(b);
}
void sect_AbsByteGroup(uint8_t const *s, size_t length) {
if (!checkcodesection())
return;
if (!reserveSpace(length))
return;
while (length--)
writebyte(*s++);
}
void sect_AbsWordGroup(uint8_t const *s, size_t length) {
if (!checkcodesection())
return;
if (!reserveSpace(length * 2))
return;
while (length--)
writeword(*s++);
}
void sect_AbsLongGroup(uint8_t const *s, size_t length) {
if (!checkcodesection())
return;
if (!reserveSpace(length * 4))
return;
while (length--)
writelong(*s++);
}
// Skip this many bytes
void sect_Skip(uint32_t skip, bool ds) {
if (!checksection())
return;
if (!reserveSpace(skip))
return;
if (!sect_HasData(currentSection->type)) {
growSection(skip);
} else {
if (!ds)
warning(
WARNING_EMPTY_DATA_DIRECTIVE,
"%s directive without data in ROM\n",
(skip == 4) ? "DL"
: (skip == 2) ? "DW"
: "DB"
);
// We know we're in a code SECTION
while (skip--)
writebyte(fillByte);
}
}
// Output a relocatable byte. Checking will be done to see if it
// is an absolute value in disguise.
void sect_RelByte(Expression &expr, uint32_t pcShift) {
if (!checkcodesection())
return;
if (!reserveSpace(1))
return;
if (!expr.isKnown) {
createPatch(PATCHTYPE_BYTE, expr, pcShift);
writebyte(0);
} else {
writebyte(expr.val);
}
}
// Output several copies of a relocatable byte. Checking will be done to see if
// it is an absolute value in disguise.
void sect_RelBytes(uint32_t n, std::vector<Expression> &exprs) {
if (!checkcodesection())
return;
if (!reserveSpace(n))
return;
for (uint32_t i = 0; i < n; i++) {
Expression &expr = exprs[i % exprs.size()];
if (!expr.isKnown) {
createPatch(PATCHTYPE_BYTE, expr, i);
writebyte(0);
} else {
writebyte(expr.val);
}
}
}
// Output a relocatable word. Checking will be done to see if
// it's an absolute value in disguise.
void sect_RelWord(Expression &expr, uint32_t pcShift) {
if (!checkcodesection())
return;
if (!reserveSpace(2))
return;
if (!expr.isKnown) {
createPatch(PATCHTYPE_WORD, expr, pcShift);
writeword(0);
} else {
writeword(expr.val);
}
}
// Output a relocatable longword. Checking will be done to see if
// is an absolute value in disguise.
void sect_RelLong(Expression &expr, uint32_t pcShift) {
if (!checkcodesection())
return;
if (!reserveSpace(2))
return;
if (!expr.isKnown) {
createPatch(PATCHTYPE_LONG, expr, pcShift);
writelong(0);
} else {
writelong(expr.val);
}
}
// Output a PC-relative relocatable byte. Checking will be done to see if it
// is an absolute value in disguise.
void sect_PCRelByte(Expression &expr, uint32_t pcShift) {
if (!checkcodesection())
return;
if (!reserveSpace(1))
return;
Symbol const *pc = sym_GetPC();
if (!expr.isDiffConstant(pc)) {
createPatch(PATCHTYPE_JR, expr, pcShift);
writebyte(0);
} else {
Symbol const *sym = expr.symbolOf();
// The offset wraps (jump from ROM to HRAM, for example)
int16_t offset;
// Offset is relative to the byte *after* the operand
if (sym == pc)
offset = -2; // PC as operand to `jr` is lower than reference PC by 2
else
offset = sym->getValue() - (pc->getValue() + 1);
if (offset < -128 || offset > 127) {
error("jr target out of reach (expected -129 < %" PRId16 " < 128)\n", offset);
writebyte(0);
} else {
writebyte(offset);
}
}
}
// Output a binary file
void sect_BinaryFile(std::string const &name, int32_t startPos) {
if (startPos < 0) {
error("Start position cannot be negative (%" PRId32 ")\n", startPos);
startPos = 0;
}
if (!checkcodesection())
return;
std::optional<std::string> fullPath = fstk_FindFile(name);
FILE *file = fullPath ? fopen(fullPath->c_str(), "rb") : nullptr;
if (!file) {
if (generatedMissingIncludes) {
if (verbose)
printf("Aborting (-MG) on INCBIN file '%s' (%s)\n", name.c_str(), strerror(errno));
failedOnMissingInclude = true;
return;
}
error("Error opening INCBIN file '%s': %s\n", name.c_str(), strerror(errno));
return;
}
int32_t fsize = -1;
int byte;
if (fseek(file, 0, SEEK_END) != -1) {
fsize = ftell(file);
if (startPos > fsize) {
error("Specified start position is greater than length of file\n");
goto cleanup;
}
fseek(file, startPos, SEEK_SET);
if (!reserveSpace(fsize - startPos))
goto cleanup;
} else {
if (errno != ESPIPE)
error(
"Error determining size of INCBIN file '%s': %s\n", name.c_str(), strerror(errno)
);
// The file isn't seekable, so we'll just skip bytes
while (startPos--)
(void)fgetc(file);
}
while ((byte = fgetc(file)) != EOF) {
if (fsize == -1)
growSection(1);
writebyte(byte);
}
if (ferror(file))
error("Error reading INCBIN file '%s': %s\n", name.c_str(), strerror(errno));
cleanup:
fclose(file);
}
void sect_BinaryFileSlice(std::string const &name, int32_t startPos, int32_t length) {
if (startPos < 0) {
error("Start position cannot be negative (%" PRId32 ")\n", startPos);
startPos = 0;
}
if (length < 0) {
error("Number of bytes to read cannot be negative (%" PRId32 ")\n", length);
length = 0;
}
if (!checkcodesection())
return;
if (length == 0) // Don't even bother with 0-byte slices
return;
if (!reserveSpace(length))
return;
std::optional<std::string> fullPath = fstk_FindFile(name);
FILE *file = fullPath ? fopen(fullPath->c_str(), "rb") : nullptr;
if (!file) {
if (generatedMissingIncludes) {
if (verbose)
printf("Aborting (-MG) on INCBIN file '%s' (%s)\n", name.c_str(), strerror(errno));
failedOnMissingInclude = true;
} else {
error("Error opening INCBIN file '%s': %s\n", name.c_str(), strerror(errno));
}
return;
}
int32_t fsize;
if (fseek(file, 0, SEEK_END) != -1) {
fsize = ftell(file);
if (startPos > fsize) {
error("Specified start position is greater than length of file\n");
goto cleanup;
}
if ((startPos + length) > fsize) {
error(
"Specified range in INCBIN is out of bounds (%" PRIu32 " + %" PRIu32 " > %" PRIu32
")\n",
startPos,
length,
fsize
);
goto cleanup;
}
fseek(file, startPos, SEEK_SET);
} else {
if (errno != ESPIPE)
error(
"Error determining size of INCBIN file '%s': %s\n", name.c_str(), strerror(errno)
);
// The file isn't seekable, so we'll just skip bytes
while (startPos--)
(void)fgetc(file);
}
while (length--) {
int byte = fgetc(file);
if (byte != EOF) {
writebyte(byte);
} else if (ferror(file)) {
error("Error reading INCBIN file '%s': %s\n", name.c_str(), strerror(errno));
} else {
error("Premature end of file (%" PRId32 " bytes left to read)\n", length + 1);
}
}
cleanup:
fclose(file);
}
// Section stack routines
void sect_PushSection() {
sectionStack.push_front({
.section = currentSection,
.loadSection = currentLoadSection,
.scope = sym_GetCurrentSymbolScope(),
.offset = curOffset,
.loadOffset = loadOffset,
.unionStack = {},
});
// Reset the section scope
currentSection = nullptr;
currentLoadSection = nullptr;
sym_SetCurrentSymbolScope(std::nullopt);
std::swap(currentUnionStack, sectionStack.front().unionStack);
}
void sect_PopSection() {
if (sectionStack.empty())
fatalerror("No entries in the section stack\n");
if (currentLoadSection)
fatalerror("Cannot change the section within a `LOAD` block\n");
SectionStackEntry entry = sectionStack.front();
sectionStack.pop_front();
changeSection();
currentSection = entry.section;
currentLoadSection = entry.loadSection;
sym_SetCurrentSymbolScope(entry.scope);
curOffset = entry.offset;
loadOffset = entry.loadOffset;
std::swap(currentUnionStack, entry.unionStack);
}
void sect_EndSection() {
if (!currentSection)
fatalerror("Cannot end the section outside of a SECTION\n");
if (currentLoadSection)
fatalerror("Cannot end the section within a `LOAD` block\n");
if (!currentUnionStack.empty())
fatalerror("Cannot end the section within a UNION\n");
// Reset the section scope
currentSection = nullptr;
sym_SetCurrentSymbolScope(std::nullopt);
}