Files
rgbds/src/asm/rpn.cpp
2024-03-07 12:40:33 -05:00

625 lines
16 KiB
C++

/* SPDX-License-Identifier: MIT */
// Controls RPN expressions for objectfiles
#include "asm/rpn.hpp"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <new>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include "opmath.hpp"
#include "asm/main.hpp"
#include "asm/output.hpp"
#include "asm/section.hpp"
#include "asm/symbol.hpp"
#include "asm/warning.hpp"
// Init a RPN expression
static void initExpression(Expression &expr) {
expr.val = 0;
expr.reason.clear();
expr.isKnown = true;
expr.isSymbol = false;
expr.rpn = nullptr;
expr.rpnPatchSize = 0;
}
// Makes an expression "not known", also setting its error message
template<typename... Ts>
static void makeUnknown(Expression &expr, Ts... parts) {
expr.isKnown = false;
expr.reason.clear();
(expr.reason.append(parts), ...);
}
static uint8_t *reserveSpace(Expression &expr, uint32_t size) {
if (!expr.rpn) {
expr.rpn = new (std::nothrow) std::vector<uint8_t>();
if (!expr.rpn)
fatalerror("Failed to allocate RPN expression: %s\n", strerror(errno));
}
size_t curSize = expr.rpn->size();
expr.rpn->resize(curSize + size);
return &(*expr.rpn)[curSize];
}
// Free the RPN expression
void rpn_Free(Expression &expr) {
delete expr.rpn;
initExpression(expr);
}
// Add symbols, constants and operators to expression
void rpn_Number(Expression &expr, uint32_t val) {
initExpression(expr);
expr.val = val;
}
void rpn_Symbol(Expression &expr, char const *symName) {
initExpression(expr);
Symbol *sym = sym_FindScopedSymbol(symName);
if (sym_IsPC(sym) && !sect_GetSymbolSection()) {
error("PC has no value outside a section\n");
expr.val = 0;
} else if (!sym || !sym->isConstant()) {
expr.isSymbol = true;
if (sym_IsPC(sym))
makeUnknown(expr, "PC is not constant at assembly time");
else
makeUnknown(expr, "'", symName, "' is not constant at assembly time");
sym = sym_Ref(symName);
expr.rpnPatchSize += 5; // 1-byte opcode + 4-byte symbol ID
size_t nameLen = sym->name.length() + 1; // Don't forget NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
*ptr++ = RPN_SYM;
memcpy(ptr, sym->name.c_str(), nameLen);
} else {
expr.val = sym_GetConstantValue(symName);
}
}
static void bankSelf(Expression &expr) {
initExpression(expr);
if (!currentSection) {
error("PC has no bank outside a section\n");
expr.val = 1;
} else if (currentSection->bank == (uint32_t)-1) {
makeUnknown(expr, "Current section's bank is not known");
expr.rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_BANK_SELF;
} else {
expr.val = currentSection->bank;
}
}
void rpn_BankSymbol(Expression &expr, char const *symName) {
Symbol const *sym = sym_FindScopedSymbol(symName);
// The @ symbol is treated differently.
if (sym_IsPC(sym)) {
bankSelf(expr);
return;
}
initExpression(expr);
if (sym && !sym->isLabel()) {
error("BANK argument must be a label\n");
expr.val = 1;
} else {
sym = sym_Ref(symName);
assert(sym); // If the symbol didn't exist, it should have been created
if (sym->getSection() && sym->getSection()->bank != (uint32_t)-1) {
// Symbol's section is known and bank is fixed
expr.val = sym->getSection()->bank;
} else {
makeUnknown(expr, "\"", symName, "\"'s bank is not known");
expr.rpnPatchSize += 5; // opcode + 4-byte sect ID
size_t nameLen = sym->name.length() + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
*ptr++ = RPN_BANK_SYM;
memcpy(ptr, sym->name.c_str(), nameLen);
}
}
}
void rpn_BankSection(Expression &expr, char const *sectionName) {
initExpression(expr);
Section *section = sect_FindSectionByName(sectionName);
if (section && section->bank != (uint32_t)-1) {
expr.val = section->bank;
} else {
makeUnknown(expr, "Section \"", sectionName, "\"'s bank is not known");
size_t nameLen = strlen(sectionName) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
expr.rpnPatchSize += nameLen + 1;
*ptr++ = RPN_BANK_SECT;
memcpy(ptr, sectionName, nameLen);
}
}
void rpn_SizeOfSection(Expression &expr, char const *sectionName) {
initExpression(expr);
Section *section = sect_FindSectionByName(sectionName);
if (section && section->isSizeKnown()) {
expr.val = section->size;
} else {
makeUnknown(expr, "Section \"", sectionName, "\"'s size is not known");
size_t nameLen = strlen(sectionName) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
expr.rpnPatchSize += nameLen + 1;
*ptr++ = RPN_SIZEOF_SECT;
memcpy(ptr, sectionName, nameLen);
}
}
void rpn_StartOfSection(Expression &expr, char const *sectionName) {
initExpression(expr);
Section *section = sect_FindSectionByName(sectionName);
if (section && section->org != (uint32_t)-1) {
expr.val = section->org;
} else {
makeUnknown(expr, "Section \"", sectionName, "\"'s start is not known");
size_t nameLen = strlen(sectionName) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
expr.rpnPatchSize += nameLen + 1;
*ptr++ = RPN_STARTOF_SECT;
memcpy(ptr, sectionName, nameLen);
}
}
void rpn_SizeOfSectionType(Expression &expr, enum SectionType type) {
initExpression(expr);
makeUnknown(expr, "Section type's size is not known");
uint8_t *ptr = reserveSpace(expr, 2);
expr.rpnPatchSize += 2;
*ptr++ = RPN_SIZEOF_SECTTYPE;
*ptr++ = type;
}
void rpn_StartOfSectionType(Expression &expr, enum SectionType type) {
initExpression(expr);
makeUnknown(expr, "Section type's start is not known");
uint8_t *ptr = reserveSpace(expr, 2);
expr.rpnPatchSize += 2;
*ptr++ = RPN_STARTOF_SECTTYPE;
*ptr++ = type;
}
void rpn_CheckHRAM(Expression &expr, const Expression &src) {
expr = src;
expr.isSymbol = false;
if (!expr.isKnown) {
expr.rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_HRAM;
} else if (expr.val >= 0xFF00 && expr.val <= 0xFFFF) {
// That range is valid, but only keep the lower byte
expr.val &= 0xFF;
} else if (expr.val < 0 || expr.val > 0xFF) {
error("Source address $%" PRIx32 " not between $FF00 to $FFFF\n", expr.val);
}
}
void rpn_CheckRST(Expression &expr, const Expression &src) {
expr = src;
if (expr.isKnown) {
// A valid RST address must be masked with 0x38
if (expr.val & ~0x38)
error("Invalid address $%" PRIx32 " for RST\n", expr.val);
// The target is in the "0x38" bits, all other bits are set
expr.val |= 0xC7;
} else {
expr.rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_RST;
}
}
// Checks that an RPN expression's value fits within N bits (signed or unsigned)
void rpn_CheckNBit(Expression const &expr, uint8_t n) {
assert(n != 0); // That doesn't make sense
assert(n < CHAR_BIT * sizeof(int)); // Otherwise `1 << n` is UB
if (expr.isKnown) {
int32_t val = expr.val;
if (val < -(1 << n) || val >= 1 << n)
warning(WARNING_TRUNCATION_1, "Expression must be %u-bit\n", n);
else if (val < -(1 << (n - 1)))
warning(WARNING_TRUNCATION_2, "Expression must be %u-bit\n", n);
}
}
int32_t Expression::getConstVal() const {
if (!isKnown) {
error("Expected constant expression: %s\n", reason.c_str());
return 0;
}
return val;
}
void rpn_LOGNOT(Expression &expr, const Expression &src) {
expr = src;
expr.isSymbol = false;
if (expr.isKnown) {
expr.val = !expr.val;
} else {
expr.rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_LOGNOT;
}
}
Symbol const *Expression::symbolOf() const {
if (!isSymbol)
return nullptr;
return sym_FindScopedSymbol((char const *)&(*rpn)[1]);
}
bool Expression::isDiffConstant(Symbol const *sym) const {
// Check if both expressions only refer to a single symbol
Symbol const *sym1 = symbolOf();
if (!sym1 || !sym || sym1->type != SYM_LABEL || sym->type != SYM_LABEL)
return false;
Section const *section1 = sym1->getSection();
Section const *section2 = sym->getSection();
return section1 && (section1 == section2);
}
/*
* Attempts to compute a constant binary AND from non-constant operands
* This is possible if one operand is a symbol belonging to an `ALIGN[N]` section, and the other is
* a constant that only keeps (some of) the lower N bits.
*
* @return The constant result if it can be computed, or -1 otherwise.
*/
static int32_t tryConstMask(Expression const &lhs, Expression const &rhs) {
Symbol const *lhsSymbol = lhs.symbolOf();
Symbol const *rhsSymbol = lhsSymbol ? nullptr : rhs.symbolOf();
bool lhsIsSymbol = lhsSymbol && lhsSymbol->getSection();
bool rhsIsSymbol = rhsSymbol && rhsSymbol->getSection();
if (!lhsIsSymbol && !rhsIsSymbol)
return -1;
// If the lhs isn't a symbol, try again the other way around
Symbol const &sym = lhsIsSymbol ? *lhsSymbol : *rhsSymbol;
Expression const &expr = lhsIsSymbol ? rhs : lhs; // Opposite side of `sym`
assert(sym.isNumeric());
if (!expr.isKnown)
return -1;
// We can now safely use `expr.val`
Section const &sect = *sym.getSection();
int32_t unknownBits = (1 << 16) - (1 << sect.align); // The max alignment is 16
// The mask must ignore all unknown bits
if ((expr.val & unknownBits) != 0)
return -1;
// `sym.getValue()` attempts to add the section's address, but that's "-1"
// because the section is floating (otherwise we wouldn't be here)
assert(sect.org == (uint32_t)-1);
int32_t symbolOfs = sym.getValue() + 1;
return (symbolOfs + sect.alignOfs) & ~unknownBits;
}
void rpn_BinaryOp(
enum RPNCommand op, Expression &expr, const Expression &src1, const Expression &src2
) {
initExpression(expr);
expr.isSymbol = false;
int32_t constMaskVal;
// First, check if the expression is known
expr.isKnown = src1.isKnown && src2.isKnown;
if (expr.isKnown) {
// If both expressions are known, just compute the value
uint32_t uleft = src1.val, uright = src2.val;
switch (op) {
case RPN_LOGOR:
expr.val = src1.val || src2.val;
break;
case RPN_LOGAND:
expr.val = src1.val && src2.val;
break;
case RPN_LOGEQ:
expr.val = src1.val == src2.val;
break;
case RPN_LOGGT:
expr.val = src1.val > src2.val;
break;
case RPN_LOGLT:
expr.val = src1.val < src2.val;
break;
case RPN_LOGGE:
expr.val = src1.val >= src2.val;
break;
case RPN_LOGLE:
expr.val = src1.val <= src2.val;
break;
case RPN_LOGNE:
expr.val = src1.val != src2.val;
break;
case RPN_ADD:
expr.val = uleft + uright;
break;
case RPN_SUB:
expr.val = uleft - uright;
break;
case RPN_XOR:
expr.val = src1.val ^ src2.val;
break;
case RPN_OR:
expr.val = src1.val | src2.val;
break;
case RPN_AND:
expr.val = src1.val & src2.val;
break;
case RPN_SHL:
if (src2.val < 0)
warning(
WARNING_SHIFT_AMOUNT, "Shifting left by negative amount %" PRId32 "\n", src2.val
);
if (src2.val >= 32)
warning(
WARNING_SHIFT_AMOUNT, "Shifting left by large amount %" PRId32 "\n", src2.val
);
expr.val = op_shift_left(src1.val, src2.val);
break;
case RPN_SHR:
if (src1.val < 0)
warning(WARNING_SHIFT, "Shifting right negative value %" PRId32 "\n", src1.val);
if (src2.val < 0)
warning(
WARNING_SHIFT_AMOUNT,
"Shifting right by negative amount %" PRId32 "\n",
src2.val
);
if (src2.val >= 32)
warning(
WARNING_SHIFT_AMOUNT, "Shifting right by large amount %" PRId32 "\n", src2.val
);
expr.val = op_shift_right(src1.val, src2.val);
break;
case RPN_USHR:
if (src2.val < 0)
warning(
WARNING_SHIFT_AMOUNT,
"Shifting right by negative amount %" PRId32 "\n",
src2.val
);
if (src2.val >= 32)
warning(
WARNING_SHIFT_AMOUNT, "Shifting right by large amount %" PRId32 "\n", src2.val
);
expr.val = op_shift_right_unsigned(src1.val, src2.val);
break;
case RPN_MUL:
expr.val = uleft * uright;
break;
case RPN_DIV:
if (src2.val == 0)
fatalerror("Division by zero\n");
if (src1.val == INT32_MIN && src2.val == -1) {
warning(
WARNING_DIV,
"Division of %" PRId32 " by -1 yields %" PRId32 "\n",
INT32_MIN,
INT32_MIN
);
expr.val = INT32_MIN;
} else {
expr.val = op_divide(src1.val, src2.val);
}
break;
case RPN_MOD:
if (src2.val == 0)
fatalerror("Modulo by zero\n");
if (src1.val == INT32_MIN && src2.val == -1)
expr.val = 0;
else
expr.val = op_modulo(src1.val, src2.val);
break;
case RPN_EXP:
if (src2.val < 0)
fatalerror("Exponentiation by negative power\n");
expr.val = op_exponent(src1.val, src2.val);
break;
case RPN_NEG:
case RPN_NOT:
case RPN_LOGNOT:
case RPN_BANK_SYM:
case RPN_BANK_SECT:
case RPN_BANK_SELF:
case RPN_SIZEOF_SECT:
case RPN_STARTOF_SECT:
case RPN_SIZEOF_SECTTYPE:
case RPN_STARTOF_SECTTYPE:
case RPN_HRAM:
case RPN_RST:
case RPN_CONST:
case RPN_SYM:
fatalerror("%d is not a binary operator\n", op);
}
} else if (op == RPN_SUB && src1.isDiffConstant(src2.symbolOf())) {
Symbol const &symbol1 = *src1.symbolOf();
Symbol const &symbol2 = *src2.symbolOf();
expr.val = symbol1.getValue() - symbol2.getValue();
expr.isKnown = true;
} else if (op == RPN_AND && (constMaskVal = tryConstMask(src1, src2)) != -1) {
expr.val = constMaskVal;
expr.isKnown = true;
} else {
// If it's not known, start computing the RPN expression
// Convert the left-hand expression if it's constant
if (src1.isKnown) {
uint32_t lval = src1.val;
uint8_t bytes[] = {
RPN_CONST,
(uint8_t)lval,
(uint8_t)(lval >> 8),
(uint8_t)(lval >> 16),
(uint8_t)(lval >> 24),
};
expr.rpnPatchSize = sizeof(bytes);
expr.rpn = nullptr;
memcpy(reserveSpace(expr, sizeof(bytes)), bytes, sizeof(bytes));
// Use the other expression's un-const reason
expr.reason = src2.reason;
} else {
// Otherwise just reuse its RPN buffer
expr.rpnPatchSize = src1.rpnPatchSize;
expr.rpn = src1.rpn;
expr.reason = src1.reason;
}
// Now, merge the right expression into the left one
uint8_t const *ptr = nullptr;
uint32_t len = 0;
uint32_t patchSize = 0;
// If the right expression is constant, merge a shim instead
uint32_t rval = src2.val;
uint8_t bytes[] = {
RPN_CONST,
(uint8_t)rval,
(uint8_t)(rval >> 8),
(uint8_t)(rval >> 16),
(uint8_t)(rval >> 24),
};
if (src2.isKnown) {
ptr = bytes;
len = sizeof(bytes);
patchSize = sizeof(bytes);
} else {
ptr = src2.rpn->data(); // Pointer to the right RPN
len = src2.rpn->size(); // Size of the right RPN
patchSize = src2.rpnPatchSize;
}
// Copy the right RPN and append the operator
uint8_t *buf = reserveSpace(expr, len + 1);
if (ptr)
// If there was none, `memcpy(buf, nullptr, 0)` would be UB
memcpy(buf, ptr, len);
buf[len] = op;
delete src2.rpn; // If there was none, this is `delete nullptr`
expr.rpnPatchSize += patchSize + 1;
}
}
void rpn_HIGH(Expression &expr, const Expression &src) {
expr = src;
expr.isSymbol = false;
if (expr.isKnown) {
expr.val = (uint32_t)expr.val >> 8 & 0xFF;
} else {
uint8_t bytes[] = {RPN_CONST, 8, 0, 0, 0, RPN_SHR, RPN_CONST, 0xFF, 0, 0, 0, RPN_AND};
expr.rpnPatchSize += sizeof(bytes);
memcpy(reserveSpace(expr, sizeof(bytes)), bytes, sizeof(bytes));
}
}
void rpn_LOW(Expression &expr, const Expression &src) {
expr = src;
expr.isSymbol = false;
if (expr.isKnown) {
expr.val = expr.val & 0xFF;
} else {
uint8_t bytes[] = {RPN_CONST, 0xFF, 0, 0, 0, RPN_AND};
expr.rpnPatchSize += sizeof(bytes);
memcpy(reserveSpace(expr, sizeof(bytes)), bytes, sizeof(bytes));
}
}
void rpn_ISCONST(Expression &expr, const Expression &src) {
initExpression(expr);
expr.val = src.isKnown;
expr.isKnown = true;
expr.isSymbol = false;
}
void rpn_NEG(Expression &expr, const Expression &src) {
expr = src;
expr.isSymbol = false;
if (expr.isKnown) {
expr.val = -(uint32_t)expr.val;
} else {
expr.rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_NEG;
}
}
void rpn_NOT(Expression &expr, const Expression &src) {
expr = src;
expr.isSymbol = false;
if (expr.isKnown) {
expr.val = ~expr.val;
} else {
expr.rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_NOT;
}
}