Files
rgbds/src/asm/rpn.cpp

634 lines
16 KiB
C++

/* SPDX-License-Identifier: MIT */
// Controls RPN expressions for objectfiles
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include "asm/main.hpp"
#include "asm/output.hpp"
#include "asm/rpn.hpp"
#include "asm/section.hpp"
#include "asm/symbol.hpp"
#include "asm/warning.hpp"
#include "opmath.hpp"
// Init a RPN expression
static void initExpression(Expression *expr)
{
expr->reason = nullptr;
expr->isKnown = true;
expr->isSymbol = false;
expr->rpn = nullptr;
expr->rpnPatchSize = 0;
}
// Makes an expression "not known", also setting its error message
template<typename... Ts>
static void makeUnknown(Expression *expr, Ts ...parts)
{
expr->isKnown = false;
expr->reason = new std::string();
if (!expr->reason)
fatalerror("Failed to allocate RPN error string: %s\n", strerror(errno));
(expr->reason->append(parts), ...);
}
static uint8_t *reserveSpace(Expression *expr, uint32_t size)
{
if (!expr->rpn) {
expr->rpn = new(std::nothrow) std::vector<uint8_t>();
if (!expr->rpn)
fatalerror("Failed to allocate RPN expression: %s\n", strerror(errno));
}
size_t curSize = expr->rpn->size();
expr->rpn->resize(curSize + size);
return &(*expr->rpn)[curSize];
}
// Free the RPN expression
void rpn_Free(Expression *expr)
{
delete expr->rpn;
delete expr->reason;
initExpression(expr);
}
// Add symbols, constants and operators to expression
void rpn_Number(Expression *expr, uint32_t i)
{
initExpression(expr);
expr->val = i;
}
void rpn_Symbol(Expression *expr, char const *symName)
{
Symbol *sym = sym_FindScopedSymbol(symName);
if (sym_IsPC(sym) && !sect_GetSymbolSection()) {
error("PC has no value outside a section\n");
rpn_Number(expr, 0);
} else if (!sym || !sym->isConstant()) {
initExpression(expr);
expr->isSymbol = true;
if (sym_IsPC(sym))
makeUnknown(expr, "PC is not constant at assembly time");
else
makeUnknown(expr, "'", symName, "' is not constant at assembly time");
sym = sym_Ref(symName);
expr->rpnPatchSize += 5; // 1-byte opcode + 4-byte symbol ID
size_t nameLen = strlen(sym->name) + 1; // Don't forget NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
*ptr++ = RPN_SYM;
memcpy(ptr, sym->name, nameLen);
} else {
rpn_Number(expr, sym_GetConstantValue(symName));
}
}
void rpn_BankSelf(Expression *expr)
{
initExpression(expr);
if (!currentSection) {
error("PC has no bank outside a section\n");
expr->val = 1;
} else if (currentSection->bank == (uint32_t)-1) {
makeUnknown(expr, "Current section's bank is not known");
expr->rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_BANK_SELF;
} else {
expr->val = currentSection->bank;
}
}
void rpn_BankSymbol(Expression *expr, char const *symName)
{
Symbol const *sym = sym_FindScopedSymbol(symName);
// The @ symbol is treated differently.
if (sym_IsPC(sym)) {
rpn_BankSelf(expr);
return;
}
initExpression(expr);
if (sym && !sym->isLabel()) {
error("BANK argument must be a label\n");
} else {
sym = sym_Ref(symName);
assert(sym); // If the symbol didn't exist, it should have been created
if (sym->getSection() && sym->getSection()->bank != (uint32_t)-1) {
// Symbol's section is known and bank is fixed
expr->val = sym->getSection()->bank;
} else {
makeUnknown(expr, "\"", symName, "\"'s bank is not known");
expr->rpnPatchSize += 5; // opcode + 4-byte sect ID
size_t nameLen = strlen(sym->name) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
*ptr++ = RPN_BANK_SYM;
memcpy(ptr, sym->name, nameLen);
}
}
}
void rpn_BankSection(Expression *expr, char const *sectionName)
{
initExpression(expr);
Section *section = sect_FindSectionByName(sectionName);
if (section && section->bank != (uint32_t)-1) {
expr->val = section->bank;
} else {
makeUnknown(expr, "Section \"", sectionName, "\"'s bank is not known");
size_t nameLen = strlen(sectionName) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
expr->rpnPatchSize += nameLen + 1;
*ptr++ = RPN_BANK_SECT;
memcpy(ptr, sectionName, nameLen);
}
}
void rpn_SizeOfSection(Expression *expr, char const *sectionName)
{
initExpression(expr);
Section *section = sect_FindSectionByName(sectionName);
if (section && section->isSizeKnown()) {
expr->val = section->size;
} else {
makeUnknown(expr, "Section \"", sectionName, "\"'s size is not known");
size_t nameLen = strlen(sectionName) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
expr->rpnPatchSize += nameLen + 1;
*ptr++ = RPN_SIZEOF_SECT;
memcpy(ptr, sectionName, nameLen);
}
}
void rpn_StartOfSection(Expression *expr, char const *sectionName)
{
initExpression(expr);
Section *section = sect_FindSectionByName(sectionName);
if (section && section->org != (uint32_t)-1) {
expr->val = section->org;
} else {
makeUnknown(expr, "Section \"", sectionName, "\"'s start is not known");
size_t nameLen = strlen(sectionName) + 1; // Room for NUL!
uint8_t *ptr = reserveSpace(expr, nameLen + 1);
expr->rpnPatchSize += nameLen + 1;
*ptr++ = RPN_STARTOF_SECT;
memcpy(ptr, sectionName, nameLen);
}
}
void rpn_SizeOfSectionType(Expression *expr, enum SectionType type)
{
initExpression(expr);
makeUnknown(expr, "Section type's size is not known");
uint8_t *ptr = reserveSpace(expr, 2);
expr->rpnPatchSize += 2;
*ptr++ = RPN_SIZEOF_SECTTYPE;
*ptr++ = type;
}
void rpn_StartOfSectionType(Expression *expr, enum SectionType type)
{
initExpression(expr);
makeUnknown(expr, "Section type's start is not known");
uint8_t *ptr = reserveSpace(expr, 2);
expr->rpnPatchSize += 2;
*ptr++ = RPN_STARTOF_SECTTYPE;
*ptr++ = type;
}
void rpn_CheckHRAM(Expression *expr, const Expression *src)
{
*expr = *src;
expr->isSymbol = false;
if (!expr->isKnown) {
expr->rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_HRAM;
} else if (expr->val >= 0xFF00 && expr->val <= 0xFFFF) {
// That range is valid, but only keep the lower byte
expr->val &= 0xFF;
} else if (expr->val < 0 || expr->val > 0xFF) {
error("Source address $%" PRIx32 " not between $FF00 to $FFFF\n", expr->val);
}
}
void rpn_CheckRST(Expression *expr, const Expression *src)
{
*expr = *src;
if (expr->isKnown) {
// A valid RST address must be masked with 0x38
if (expr->val & ~0x38)
error("Invalid address $%" PRIx32 " for RST\n", expr->val);
// The target is in the "0x38" bits, all other bits are set
expr->val |= 0xC7;
} else {
expr->rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_RST;
}
}
// Checks that an RPN expression's value fits within N bits (signed or unsigned)
void rpn_CheckNBit(Expression const *expr, uint8_t n)
{
assert(n != 0); // That doesn't make sense
assert(n < CHAR_BIT * sizeof(int)); // Otherwise `1 << n` is UB
if (expr->isKnown) {
int32_t val = expr->val;
if (val < -(1 << n) || val >= 1 << n)
warning(WARNING_TRUNCATION_1, "Expression must be %u-bit\n", n);
else if (val < -(1 << (n - 1)))
warning(WARNING_TRUNCATION_2, "Expression must be %u-bit\n", n);
}
}
int32_t Expression::getConstVal() const
{
if (!isKnown) {
error("Expected constant expression: %s\n", reason->c_str());
return 0;
}
return val;
}
void rpn_LOGNOT(Expression *expr, const Expression *src)
{
*expr = *src;
expr->isSymbol = false;
if (expr->isKnown) {
expr->val = !expr->val;
} else {
expr->rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_LOGNOT;
}
}
Symbol const *Expression::symbolOf() const
{
if (!isSymbol)
return nullptr;
return sym_FindScopedSymbol((char const *)&(*rpn)[1]);
}
bool Expression::isDiffConstant(Symbol const *sym) const
{
// Check if both expressions only refer to a single symbol
Symbol const *sym1 = symbolOf();
if (!sym1 || !sym || sym1->type != SYM_LABEL || sym->type != SYM_LABEL)
return false;
Section const *section1 = sym1->getSection();
Section const *section2 = sym->getSection();
return section1 && (section1 == section2);
}
/*
* Attempts to compute a constant binary AND from non-constant operands
* This is possible if one operand is a symbol belonging to an `ALIGN[N]` section, and the other is
* a constant that only keeps (some of) the lower N bits.
*
* @return The constant result if it can be computed, or -1 otherwise.
*/
static int32_t tryConstMask(Expression const *lhs, Expression const *rhs)
{
Symbol const *sym = lhs->symbolOf();
Expression const *expr = rhs;
if (!sym || !sym->getSection()) {
// If the lhs isn't a symbol, try again the other way around
sym = rhs->symbolOf();
expr = lhs;
if (!sym || !sym->getSection())
return -1;
}
assert(sym->isNumeric());
if (!expr->isKnown)
return -1;
// We can now safely use `expr->val`
Section const *sect = sym->getSection();
int32_t unknownBits = (1 << 16) - (1 << sect->align); // The max alignment is 16
// The mask must ignore all unknown bits
if ((expr->val & unknownBits) != 0)
return -1;
// `sym->getValue()` attempts to add the section's address, but that's "-1"
// because the section is floating (otherwise we wouldn't be here)
assert(sect->org == (uint32_t)-1);
int32_t symbolOfs = sym->getValue() + 1;
return (symbolOfs + sect->alignOfs) & ~unknownBits;
}
void rpn_BinaryOp(enum RPNCommand op, Expression *expr, const Expression *src1, const Expression *src2)
{
expr->isSymbol = false;
int32_t constMaskVal;
// First, check if the expression is known
expr->isKnown = src1->isKnown && src2->isKnown;
if (expr->isKnown) {
initExpression(expr); // Init the expression to something sane
// If both expressions are known, just compute the value
uint32_t uleft = src1->val, uright = src2->val;
switch (op) {
case RPN_LOGOR:
expr->val = src1->val || src2->val;
break;
case RPN_LOGAND:
expr->val = src1->val && src2->val;
break;
case RPN_LOGEQ:
expr->val = src1->val == src2->val;
break;
case RPN_LOGGT:
expr->val = src1->val > src2->val;
break;
case RPN_LOGLT:
expr->val = src1->val < src2->val;
break;
case RPN_LOGGE:
expr->val = src1->val >= src2->val;
break;
case RPN_LOGLE:
expr->val = src1->val <= src2->val;
break;
case RPN_LOGNE:
expr->val = src1->val != src2->val;
break;
case RPN_ADD:
expr->val = uleft + uright;
break;
case RPN_SUB:
expr->val = uleft - uright;
break;
case RPN_XOR:
expr->val = src1->val ^ src2->val;
break;
case RPN_OR:
expr->val = src1->val | src2->val;
break;
case RPN_AND:
expr->val = src1->val & src2->val;
break;
case RPN_SHL:
if (src2->val < 0)
warning(WARNING_SHIFT_AMOUNT,
"Shifting left by negative amount %" PRId32 "\n",
src2->val);
if (src2->val >= 32)
warning(WARNING_SHIFT_AMOUNT,
"Shifting left by large amount %" PRId32 "\n", src2->val);
expr->val = op_shift_left(src1->val, src2->val);
break;
case RPN_SHR:
if (src1->val < 0)
warning(WARNING_SHIFT,
"Shifting right negative value %" PRId32 "\n", src1->val);
if (src2->val < 0)
warning(WARNING_SHIFT_AMOUNT,
"Shifting right by negative amount %" PRId32 "\n",
src2->val);
if (src2->val >= 32)
warning(WARNING_SHIFT_AMOUNT,
"Shifting right by large amount %" PRId32 "\n",
src2->val);
expr->val = op_shift_right(src1->val, src2->val);
break;
case RPN_USHR:
if (src2->val < 0)
warning(WARNING_SHIFT_AMOUNT,
"Shifting right by negative amount %" PRId32 "\n",
src2->val);
if (src2->val >= 32)
warning(WARNING_SHIFT_AMOUNT,
"Shifting right by large amount %" PRId32 "\n",
src2->val);
expr->val = op_shift_right_unsigned(src1->val, src2->val);
break;
case RPN_MUL:
expr->val = uleft * uright;
break;
case RPN_DIV:
if (src2->val == 0)
fatalerror("Division by zero\n");
if (src1->val == INT32_MIN && src2->val == -1) {
warning(WARNING_DIV,
"Division of %" PRId32 " by -1 yields %" PRId32 "\n",
INT32_MIN, INT32_MIN);
expr->val = INT32_MIN;
} else {
expr->val = op_divide(src1->val, src2->val);
}
break;
case RPN_MOD:
if (src2->val == 0)
fatalerror("Modulo by zero\n");
if (src1->val == INT32_MIN && src2->val == -1)
expr->val = 0;
else
expr->val = op_modulo(src1->val, src2->val);
break;
case RPN_EXP:
if (src2->val < 0)
fatalerror("Exponentiation by negative power\n");
expr->val = op_exponent(src1->val, src2->val);
break;
case RPN_NEG:
case RPN_NOT:
case RPN_LOGNOT:
case RPN_BANK_SYM:
case RPN_BANK_SECT:
case RPN_BANK_SELF:
case RPN_SIZEOF_SECT:
case RPN_STARTOF_SECT:
case RPN_SIZEOF_SECTTYPE:
case RPN_STARTOF_SECTTYPE:
case RPN_HRAM:
case RPN_RST:
case RPN_CONST:
case RPN_SYM:
fatalerror("%d is not a binary operator\n", op);
}
} else if (op == RPN_SUB && src1->isDiffConstant(src2->symbolOf())) {
Symbol const *symbol1 = src1->symbolOf();
Symbol const *symbol2 = src2->symbolOf();
expr->val = symbol1->getValue() - symbol2->getValue();
expr->isKnown = true;
} else if (op == RPN_AND && (constMaskVal = tryConstMask(src1, src2)) != -1) {
expr->val = constMaskVal;
expr->isKnown = true;
} else {
// If it's not known, start computing the RPN expression
// Convert the left-hand expression if it's constant
if (src1->isKnown) {
uint32_t lval = src1->val;
uint8_t bytes[] = {RPN_CONST, (uint8_t)lval, (uint8_t)(lval >> 8),
(uint8_t)(lval >> 16), (uint8_t)(lval >> 24)};
expr->rpnPatchSize = sizeof(bytes);
expr->rpn = nullptr;
memcpy(reserveSpace(expr, sizeof(bytes)), bytes, sizeof(bytes));
// Use the other expression's un-const reason
expr->reason = src2->reason;
delete src1->reason;
} else {
// Otherwise just reuse its RPN buffer
expr->rpnPatchSize = src1->rpnPatchSize;
expr->rpn = src1->rpn;
expr->reason = src1->reason;
delete src2->reason;
}
// Now, merge the right expression into the left one
uint8_t const *ptr = nullptr;
uint32_t len = 0;
uint32_t patchSize = 0;
// If the right expression is constant, merge a shim instead
uint32_t rval = src2->val;
uint8_t bytes[] = {RPN_CONST, (uint8_t)rval, (uint8_t)(rval >> 8),
(uint8_t)(rval >> 16), (uint8_t)(rval >> 24)};
if (src2->isKnown) {
ptr = bytes;
len = sizeof(bytes);
patchSize = sizeof(bytes);
} else {
ptr = src2->rpn->data(); // Pointer to the right RPN
len = src2->rpn->size(); // Size of the right RPN
patchSize = src2->rpnPatchSize;
}
// Copy the right RPN and append the operator
uint8_t *buf = reserveSpace(expr, len + 1);
if (ptr)
// If there was none, `memcpy(buf, nullptr, 0)` would be UB
memcpy(buf, ptr, len);
buf[len] = op;
delete src2->rpn; // If there was none, this is `delete nullptr`
expr->rpnPatchSize += patchSize + 1;
}
}
void rpn_HIGH(Expression *expr, const Expression *src)
{
*expr = *src;
expr->isSymbol = false;
if (expr->isKnown) {
expr->val = (uint32_t)expr->val >> 8 & 0xFF;
} else {
uint8_t bytes[] = {RPN_CONST, 8, 0, 0, 0, RPN_SHR,
RPN_CONST, 0xFF, 0, 0, 0, RPN_AND};
expr->rpnPatchSize += sizeof(bytes);
memcpy(reserveSpace(expr, sizeof(bytes)), bytes, sizeof(bytes));
}
}
void rpn_LOW(Expression *expr, const Expression *src)
{
*expr = *src;
expr->isSymbol = false;
if (expr->isKnown) {
expr->val = expr->val & 0xFF;
} else {
uint8_t bytes[] = {RPN_CONST, 0xFF, 0, 0, 0, RPN_AND};
expr->rpnPatchSize += sizeof(bytes);
memcpy(reserveSpace(expr, sizeof(bytes)), bytes, sizeof(bytes));
}
}
void rpn_ISCONST(Expression *expr, const Expression *src)
{
initExpression(expr);
expr->val = src->isKnown;
expr->isKnown = true;
expr->isSymbol = false;
}
void rpn_NEG(Expression *expr, const Expression *src)
{
*expr = *src;
expr->isSymbol = false;
if (expr->isKnown) {
expr->val = -(uint32_t)expr->val;
} else {
expr->rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_NEG;
}
}
void rpn_NOT(Expression *expr, const Expression *src)
{
*expr = *src;
expr->isSymbol = false;
if (expr->isKnown) {
expr->val = ~expr->val;
} else {
expr->rpnPatchSize++;
*reserveSpace(expr, 1) = RPN_NOT;
}
}