Files
rgbds/src/link/sdas_obj.cpp

849 lines
27 KiB
C++

/* SPDX-License-Identifier: MIT */
#include "link/sdas_obj.hpp"
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <memory>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <tuple>
#include <variant>
#include "helpers.hpp"
#include "linkdefs.hpp"
#include "platform.hpp"
#include "link/assign.hpp"
#include "link/main.hpp"
#include "link/section.hpp"
#include "link/symbol.hpp"
enum NumberType {
HEX = 16, // X
DEC = 10, // D
OCT = 8, // Q
};
static void consumeLF(FileStackNode const &where, uint32_t lineNo, FILE *file) {
if (getc(file) != '\n')
fatal(&where, lineNo, "Bad line ending (CR without LF)");
}
static char const *delim = " \f\n\r\t\v"; // Whitespace according to the C and POSIX locales
static int
nextLine(std::vector<char> &lineBuf, uint32_t &lineNo, FileStackNode const &where, FILE *file) {
retry:
++lineNo;
int firstChar = getc(file);
switch (firstChar) {
case EOF:
return EOF;
case ';':
// Discard comment line
// TODO: if `;!FILE [...]` on the first line (`lineNo`), return it
do {
firstChar = getc(file);
} while (firstChar != EOF && firstChar != '\r' && firstChar != '\n');
// fallthrough
case '\r':
if (firstChar == '\r' && getc(file) != '\n')
consumeLF(where, lineNo, file);
// fallthrough
case '\n':
goto retry;
}
for (;;) {
int c = getc(file);
switch (c) {
case '\r':
consumeLF(where, lineNo, file);
// fallthrough
case '\n':
case EOF:
lineBuf.push_back('\0'); // Terminate the string (space was ensured above)
return firstChar;
}
lineBuf.push_back(c);
}
}
static uint32_t readNumber(char const *str, char const *&endptr, NumberType base) {
uint32_t res = 0;
for (;;) {
static char const *digits = "0123456789ABCDEF";
char const *ptr = strchr(digits, toupper(*str));
if (!ptr || ptr - digits >= base) {
endptr = str;
return res;
}
++str;
res = res * base + (ptr - digits);
}
}
static uint32_t
parseNumber(FileStackNode const &where, uint32_t lineNo, char const *str, NumberType base) {
if (str[0] == '\0')
fatal(&where, lineNo, "Expected number, got empty string");
char const *endptr;
uint32_t res = readNumber(str, endptr, base);
if (*endptr != '\0')
fatal(&where, lineNo, "Expected number, got \"%s\"", str);
return res;
}
static uint8_t
parseByte(FileStackNode const &where, uint32_t lineNo, char const *str, NumberType base) {
uint32_t num = parseNumber(where, lineNo, str, base);
if (num > UINT8_MAX)
fatal(&where, lineNo, "\"%s\" is not a byte", str);
return num;
}
enum AreaFlags {
AREA_TYPE = 2, // 0: Concatenate, 1: overlay
AREA_ISABS, // 0: Relative (???) address, 1: absolute address
AREA_PAGING, // Unsupported
AREA_ALL_FLAGS = 1 << AREA_TYPE | 1 << AREA_ISABS | 1 << AREA_PAGING,
};
enum RelocFlags {
RELOC_SIZE, // 0: 16-bit, 1: 8-bit
RELOC_ISSYM, // 0: Area, 1: Symbol
RELOC_ISPCREL, // 0: Normal, 1: PC-relative
RELOC_EXPR16, // Only for 8-bit size; 0: 8-bit expr, 1: 16-bit expr
RELOC_SIGNED, // 0: signed, 1: unsigned
RELOC_ZPAGE, // Unsupported
RELOC_NPAGE, // Unsupported
RELOC_WHICHBYTE, // 8-bit size with 16-bit expr only; 0: LOW(), 1: HIGH()
RELOC_EXPR24, // Only for 8-bit size; 0: follow RELOC_EXPR16, 1: 24-bit expr
RELOC_BANKBYTE, // 8-bit size with 24-bit expr only; 0: follow RELOC_WHICHBYTE, 1: BANK()
RELOC_ALL_FLAGS = 1 << RELOC_SIZE | 1 << RELOC_ISSYM | 1 << RELOC_ISPCREL | 1 << RELOC_EXPR16
| 1 << RELOC_SIGNED | 1 << RELOC_ZPAGE | 1 << RELOC_NPAGE
| 1 << RELOC_WHICHBYTE | 1 << RELOC_EXPR24 | 1 << RELOC_BANKBYTE,
};
void sdobj_ReadFile(FileStackNode const &where, FILE *file, std::vector<Symbol> &fileSymbols) {
std::vector<char> line(256);
char const *token;
#define getToken(ptr, ...) \
do { \
token = strtok((ptr), delim); \
if (!token) \
fatal(&where, lineNo, __VA_ARGS__); \
} while (0)
#define expectEol(...) \
do { \
token = strtok(nullptr, delim); \
if (token) \
fatal(&where, lineNo, __VA_ARGS__); \
} while (0)
#define expectToken(expected, lineType) \
do { \
getToken(nullptr, "'%c' line is too short", (lineType)); \
if (strcasecmp(token, (expected)) != 0) \
fatal( \
&where, \
lineNo, \
"Malformed '%c' line: expected \"%s\", got \"%s\"", \
(lineType), \
(expected), \
token \
); \
} while (0)
uint32_t lineNo = 0;
int lineType = nextLine(line, lineNo, where, file);
NumberType numberType;
// The first letter (thus, the line type) identifies the integer type
switch (lineType) {
case EOF:
fatal(&where, lineNo, "SDCC object only contains comments and empty lines");
case 'X':
numberType = HEX;
break;
case 'D':
numberType = DEC;
break;
case 'Q':
numberType = OCT;
break;
default:
fatal(
&where,
lineNo,
"This does not look like a SDCC object file (unknown integer format '%c')",
lineType
);
}
switch (line[0]) {
case 'L':
break;
case 'H':
fatal(&where, lineNo, "Big-endian SDCC object files are not supported");
default:
fatal(&where, lineNo, "Unknown endianness type '%c'", line[0]);
}
#define ADDR_SIZE 3
if (line[1] != '0' + ADDR_SIZE)
fatal(&where, lineNo, "Unknown or unsupported address size '%c'", line[1]);
if (line[2] != '\0')
warning(&where, lineNo, "Ignoring unknown characters (\"%s\") in first line", &line[2]);
// Header line
lineType = nextLine(line, lineNo, where, file);
if (lineType != 'H')
fatal(&where, lineNo, "Expected header line, got '%c' line", lineType);
// Expected format: "A areas S global symbols"
getToken(line.data(), "Empty 'H' line");
uint32_t expectedNbAreas = parseNumber(where, lineNo, token, numberType);
expectToken("areas", 'H');
getToken(nullptr, "'H' line is too short");
uint32_t expectedNbSymbols = parseNumber(where, lineNo, token, numberType);
expectToken("global", 'H');
expectToken("symbols", 'H');
expectEol("'H' line is too long");
// Now, let's parse the rest of the lines as they come!
struct FileSection {
std::unique_ptr<Section> section;
uint16_t writeIndex;
};
std::vector<FileSection> fileSections;
std::vector<uint8_t> data;
for (;;) {
lineType = nextLine(line, lineNo, where, file);
if (lineType == EOF)
break;
switch (lineType) {
case 'M': // Module name
case 'O': // Assembler flags
// Ignored
break;
case 'A': {
if (fileSections.size() == expectedNbAreas)
warning(
&where, lineNo, "Got more 'A' lines than the expected %" PRIu32, expectedNbAreas
);
std::unique_ptr<Section> curSection = std::make_unique<Section>();
getToken(line.data(), "'A' line is too short");
assert(strlen(token) != 0); // This should be impossible, tokens are non-empty
// The following is required for fragment offsets to be reliably predicted
for (FileSection &entry : fileSections) {
if (!strcmp(token, entry.section->name.c_str()))
fatal(&where, lineNo, "Area \"%s\" already defined earlier", token);
}
char const *sectName = token; // We'll deal with the section's name depending on type
expectToken("size", 'A');
getToken(nullptr, "'A' line is too short");
uint32_t tmp = parseNumber(where, lineNo, token, numberType);
if (tmp > UINT16_MAX)
fatal(
&where,
lineNo,
"Area \"%s\" is larger than the GB address space!?",
curSection->name.c_str()
);
curSection->size = tmp;
expectToken("flags", 'A');
getToken(nullptr, "'A' line is too short");
tmp = parseNumber(where, lineNo, token, numberType);
if (tmp & (1 << AREA_PAGING))
fatal(&where, lineNo, "Internal error: paging is not supported");
curSection->isAddressFixed = tmp & (1 << AREA_ISABS);
curSection->isBankFixed = curSection->isAddressFixed;
curSection->modifier = curSection->isAddressFixed || (tmp & (1 << AREA_TYPE))
? SECTION_NORMAL
: SECTION_FRAGMENT;
// If the section is absolute, its name might not be unique; thus, mangle the name
if (curSection->modifier == SECTION_NORMAL) {
curSection->name.append(where.name());
curSection->name.append(" ");
}
curSection->name.append(sectName);
expectToken("addr", 'A');
getToken(nullptr, "'A' line is too short");
tmp = parseNumber(where, lineNo, token, numberType);
curSection->org = tmp; // Truncation keeps the address portion only
curSection->bank = tmp >> 16;
expectEol("'A' line is too long");
// Init the rest of the members
curSection->offset = 0;
if (curSection->isAddressFixed) {
uint8_t high = curSection->org >> 8;
if (high < 0x40) {
curSection->type = SECTTYPE_ROM0;
} else if (high < 0x80) {
curSection->type = SECTTYPE_ROMX;
} else if (high < 0xA0) {
curSection->type = SECTTYPE_VRAM;
} else if (high < 0xC0) {
curSection->type = SECTTYPE_SRAM;
} else if (high < 0xD0) {
curSection->type = SECTTYPE_WRAM0;
} else if (high < 0xE0) {
curSection->type = SECTTYPE_WRAMX;
} else if (high < 0xFE) {
fatal(&where, lineNo, "Areas in echo RAM are not supported");
} else if (high < 0xFF) {
curSection->type = SECTTYPE_OAM;
} else {
curSection->type = SECTTYPE_HRAM;
}
} else {
curSection->type = SECTTYPE_INVALID; // This means "indeterminate"
}
curSection->isAlignFixed = false; // No such concept!
curSection->fileSymbols = &fileSymbols; // IDs are instead per-section
curSection->nextu = nullptr;
fileSections.push_back({.section = std::move(curSection), .writeIndex = 0});
break;
}
case 'S': {
if (fileSymbols.size() == expectedNbSymbols)
warning(
&where,
lineNo,
"Got more 'S' lines than the expected %" PRIu32,
expectedNbSymbols
);
Symbol &symbol = fileSymbols.emplace_back();
// Init other members
symbol.objFileName = where.name().c_str();
symbol.src = &where;
symbol.lineNo = lineNo;
getToken(line.data(), "'S' line is too short");
symbol.name = token;
getToken(nullptr, "'S' line is too short");
if (int32_t value = parseNumber(where, lineNo, &token[3], numberType);
!fileSections.empty()) {
// Symbols in sections are labels; their value is an offset
Section *section = fileSections.back().section.get();
if (section->isAddressFixed) {
assert(value >= section->org && value <= section->org + section->size);
value -= section->org;
}
// No need to set the `sectionID`, since we set the pointer
symbol.data = Label{.sectionID = 0, .offset = value, .section = section};
} else {
// Symbols without sections are just constants
symbol.data = value;
}
// Expected format: /[DR]ef[0-9A-F]+/i
if (token[0] == 'R' || token[0] == 'r') {
symbol.type = SYMTYPE_IMPORT;
// TODO: hard error if the rest is not zero
} else if (token[0] != 'D' && token[0] != 'd') {
fatal(&where, lineNo, "'S' line is neither \"Def\" nor \"Ref\"");
} else {
// All symbols are exported
symbol.type = SYMTYPE_EXPORT;
Symbol const *other = sym_GetSymbol(symbol.name);
if (other) {
// The same symbol can only be defined twice if neither
// definition is in a floating section
auto checkSymbol = [](Symbol const &sym) -> std::tuple<Section *, int32_t> {
if (auto *label = std::get_if<Label>(&sym.data); label)
return {label->section, label->offset};
assert(std::holds_alternative<int32_t>(sym.data));
return {nullptr, std::get<int32_t>(sym.data)};
};
auto [symbolSection, symbolValue] = checkSymbol(symbol);
auto [otherSection, otherValue] = checkSymbol(*other);
if ((otherSection && !otherSection->isAddressFixed)
|| (symbolSection && !symbolSection->isAddressFixed)) {
sym_AddSymbol(symbol); // This will error out
} else if (otherValue != symbolValue) {
error(
&where,
lineNo,
"Definition of \"%s\" conflicts with definition in %s (%" PRId32
" != %" PRId32 ")",
symbol.name.c_str(),
other->objFileName,
symbolValue,
otherValue
);
}
} else {
// Add a new definition
sym_AddSymbol(symbol);
}
// It's fine to keep modifying the symbol after `AddSymbol`, only
// the name must not be modified
}
if (strncasecmp(&token[1], "ef", 2) != 0)
fatal(&where, lineNo, "'S' line is neither \"Def\" nor \"Ref\"");
if (!fileSections.empty())
fileSections.back().section->symbols.push_back(&symbol);
expectEol("'S' line is too long");
break;
}
case 'T':
// Now, time to parse the data!
if (!data.empty())
warning(&where, lineNo, "Previous 'T' line had no 'R' line (ignored)");
data.clear();
for (token = strtok(line.data(), delim); token; token = strtok(nullptr, delim))
data.push_back(parseByte(where, lineNo, token, numberType));
if (data.size() < ADDR_SIZE)
fatal(&where, lineNo, "'T' line is too short");
// Importantly, now we know that there is "pending data" in `data`
break;
case 'R': {
// Supposed to directly follow `T`
if (data.empty()) {
warning(&where, lineNo, "'R' line with no 'T' line, ignoring");
break;
}
// First two bytes are ignored
getToken(line.data(), "'R' line is too short");
getToken(nullptr, "'R' line is too short");
uint16_t areaIdx;
getToken(nullptr, "'R' line is too short");
areaIdx = parseByte(where, lineNo, token, numberType);
getToken(nullptr, "'R' line is too short");
areaIdx |= (uint16_t)parseByte(where, lineNo, token, numberType) << 8;
if (areaIdx >= fileSections.size())
fatal(
&where,
lineNo,
"'R' line references area #%" PRIu16 ", but there are only %zu (so far)",
areaIdx,
fileSections.size()
);
assert(!fileSections.empty()); // There should be at least one, from the above check
Section *section = fileSections[areaIdx].section.get();
uint16_t *writeIndex = &fileSections[areaIdx].writeIndex;
uint8_t writtenOfs = ADDR_SIZE; // Bytes before this have been written to `->data`
uint16_t addr = data[0] | data[1] << 8;
if (section->isAddressFixed) {
if (addr < section->org)
fatal(
&where,
lineNo,
"'T' line reports address $%04" PRIx16
" in \"%s\", which starts at $%04" PRIx16,
addr,
section->name.c_str(),
section->org
);
addr -= section->org;
}
// Lines are emitted that violate this check but contain no "payload";
// ignore those. "Empty" lines shouldn't trigger allocation, either.
if (data.size() != ADDR_SIZE) {
if (addr != *writeIndex)
fatal(
&where,
lineNo,
"'T' lines which don't append to their section are not supported (%" PRIu16
" != %" PRIu16 ")",
addr,
*writeIndex
);
if (section->data.empty()) {
assert(section->size != 0);
section->data.resize(section->size);
}
}
// Processing relocations is made difficult by SDLD's honestly quite bonkers
// handling of the thing.
// The way they work is that 16-bit relocs are, simply enough, writing a
// 16-bit value over a 16-bit "gap". Nothing weird here.
// 8-bit relocs, however, do not write an 8-bit value over an 8-bit gap!
// They write an 8-bit value over a 16-bit gap... and either of the two
// bytes is *discarded*. The "24-bit" flag extends this behavior to three
// bytes instead of two, but the idea's the same.
// Additionally, the "offset" is relative to *before* bytes from previous
// relocs are removed, so this needs to be accounted for as well.
// This all can be "translated" to RGBDS parlance by generating the
// appropriate RPN expression (depending on flags), plus an addition for the
// bytes being patched over.
while ((token = strtok(nullptr, delim)) != nullptr) {
uint16_t flags = parseByte(where, lineNo, token, numberType);
if ((flags & 0xF0) == 0xF0) {
getToken(nullptr, "Incomplete relocation");
flags =
(flags & 0x0F) | (uint16_t)parseByte(where, lineNo, token, numberType) << 4;
}
getToken(nullptr, "Incomplete relocation");
uint8_t offset = parseByte(where, lineNo, token, numberType);
if (offset < ADDR_SIZE)
fatal(
&where,
lineNo,
"Relocation index cannot point to header (%" PRIu16 " < %u)",
offset,
ADDR_SIZE
);
if (offset >= data.size())
fatal(
&where,
lineNo,
"Relocation index is out of bounds (%" PRIu16 " >= %zu)",
offset,
data.size()
);
getToken(nullptr, "Incomplete relocation");
uint16_t idx = parseByte(where, lineNo, token, numberType);
getToken(nullptr, "Incomplete relocation");
idx |= (uint16_t)parseByte(where, lineNo, token, numberType);
// Loudly fail on unknown flags
if (flags & (1 << RELOC_ZPAGE | 1 << RELOC_NPAGE))
fatal(&where, lineNo, "Paging flags are not supported");
if (flags & ~RELOC_ALL_FLAGS)
warning(&where, lineNo, "Unknown reloc flags 0x%x", flags & ~RELOC_ALL_FLAGS);
// Turn this into a Patch
Patch &patch = section->patches.emplace_back();
patch.lineNo = lineNo;
patch.src = &where;
patch.offset = offset - writtenOfs + *writeIndex;
if (section->patches.size() > 1) {
uint32_t prevOffset = section->patches[section->patches.size() - 2].offset;
if (prevOffset >= patch.offset)
fatal(
&where,
lineNo,
"Relocs not sorted by offset are not supported (%" PRIu32 " >= %" PRIu32
")",
prevOffset,
patch.offset
);
}
patch.pcSection = section; // No need to fill `pcSectionID`, then
patch.pcOffset = patch.offset - 1; // For `jr`s
patch.type = (flags & 1 << RELOC_SIZE) ? PATCHTYPE_BYTE : PATCHTYPE_WORD;
uint8_t nbBaseBytes = patch.type == PATCHTYPE_BYTE ? ADDR_SIZE : 2;
uint32_t baseValue = 0;
assert(offset < data.size());
if (data.size() - offset < nbBaseBytes)
fatal(
&where,
lineNo,
"Reloc would patch out of bounds (%" PRIu8 " > %zu)",
nbBaseBytes,
data.size() - offset
);
for (uint8_t i = 0; i < nbBaseBytes; ++i)
baseValue = baseValue | data[offset + i] << (8 * i);
// Bit 4 specifies signedness, but I don't think that matters?
// Generate a RPN expression from the info and flags
if (flags & 1 << RELOC_ISSYM) {
if (idx >= fileSymbols.size())
fatal(
&where,
lineNo,
"Reloc refers to symbol #%" PRIu16 " out of %zu",
idx,
fileSymbols.size()
);
Symbol const &sym = fileSymbols[idx];
// SDCC has a bunch of "magic symbols" that start with a
// letter and an underscore. These are not compatibility
// hacks, this is how SDLD actually works.
if (sym.name.starts_with("b_")) {
// Look for the symbol being referenced, and use its index instead
for (idx = 0; idx < fileSymbols.size(); ++idx) {
if (sym.name.ends_with(fileSymbols[idx].name)
&& 1 + sym.name.length() == fileSymbols[idx].name.length())
break;
}
if (idx == fileSymbols.size())
fatal(
&where,
lineNo,
"\"%s\" is missing a reference to \"%s\"",
sym.name.c_str(),
&sym.name.c_str()[1]
);
patch.rpnExpression.resize(5);
patch.rpnExpression[0] = RPN_BANK_SYM;
patch.rpnExpression[1] = idx;
patch.rpnExpression[2] = idx >> 8;
patch.rpnExpression[3] = idx >> 16;
patch.rpnExpression[4] = idx >> 24;
} else if (sym.name.starts_with("l_")) {
patch.rpnExpression.resize(1 + sym.name.length() - 2 + 1);
patch.rpnExpression[0] = RPN_SIZEOF_SECT;
memcpy(
(char *)&patch.rpnExpression[1],
&sym.name.c_str()[2],
sym.name.length() - 2 + 1
);
} else if (sym.name.starts_with("s_")) {
patch.rpnExpression.resize(1 + sym.name.length() - 2 + 1);
patch.rpnExpression[0] = RPN_STARTOF_SECT;
memcpy(
(char *)&patch.rpnExpression[1],
&sym.name.c_str()[2],
sym.name.length() - 2 + 1
);
} else {
patch.rpnExpression.resize(5);
patch.rpnExpression[0] = RPN_SYM;
patch.rpnExpression[1] = idx;
patch.rpnExpression[2] = idx >> 8;
patch.rpnExpression[3] = idx >> 16;
patch.rpnExpression[4] = idx >> 24;
}
} else {
if (idx >= fileSections.size())
fatal(
&where,
lineNo,
"Reloc refers to area #%" PRIu16 " out of %zu",
idx,
fileSections.size()
);
// It gets funky. If the area is absolute, *actually*, we
// must not add its base address, as the assembler will
// already have added it in `baseValue`.
// We counteract this by subtracting the section's base
// address from `baseValue`, undoing what the assembler did;
// this allows the relocation to still be correct, even if
// the section gets moved for any reason.
if (fileSections[idx].section->isAddressFixed)
baseValue -= fileSections[idx].section->org;
std::string const &name = fileSections[idx].section->name;
Section const *other = sect_GetSection(name);
// Unlike with `s_<AREA>`, referencing an area in this way
// wants the beginning of this fragment, so we must add the
// fragment's (putative) offset to account for this.
// The fragment offset prediction is guaranteed since each
// section can only have one fragment per SDLD object file,
// so this fragment will be appended to the existing section
// *if any*, and thus its offset will be the section's
// current size.
if (other)
baseValue += other->size;
patch.rpnExpression.resize(1 + name.length() + 1);
patch.rpnExpression[0] = RPN_STARTOF_SECT;
// The cast is fine, it's just different signedness
memcpy((char *)&patch.rpnExpression[1], name.c_str(), name.length() + 1);
}
patch.rpnExpression.push_back(RPN_CONST);
patch.rpnExpression.push_back(baseValue);
patch.rpnExpression.push_back(baseValue >> 8);
patch.rpnExpression.push_back(baseValue >> 16);
patch.rpnExpression.push_back(baseValue >> 24);
patch.rpnExpression.push_back(RPN_ADD);
if (patch.type == PATCHTYPE_BYTE) {
// Despite the flag's name, as soon as it is set, 3 bytes
// are present, so we must skip two of them
if (flags & 1 << RELOC_EXPR16) {
if (*writeIndex + (offset - writtenOfs) > section->size)
fatal(
&where,
lineNo,
"'T' line writes past \"%s\"'s end (%u > %" PRIu16 ")",
section->name.c_str(),
*writeIndex + (offset - writtenOfs),
section->size
);
// Copy all bytes up to those (plus the byte that we'll overwrite)
memcpy(
&section->data[*writeIndex], &data[writtenOfs], offset - writtenOfs + 1
);
*writeIndex += offset - writtenOfs + 1;
writtenOfs = offset + 3; // Skip all three `baseValue` bytes, though
}
// Append the necessary operations...
if (flags & 1 << RELOC_ISPCREL) {
// The result must *not* be truncated for those!
patch.type = PATCHTYPE_JR;
// TODO: check the other flags?
} else if (flags & 1 << RELOC_EXPR24 && flags & 1 << RELOC_BANKBYTE) {
patch.rpnExpression.push_back(RPN_CONST);
patch.rpnExpression.push_back(16);
patch.rpnExpression.push_back(16 >> 8);
patch.rpnExpression.push_back(16 >> 16);
patch.rpnExpression.push_back(16 >> 24);
patch.rpnExpression.push_back(
(flags & 1 << RELOC_SIGNED) ? RPN_SHR : RPN_USHR
);
} else {
if (flags & 1 << RELOC_EXPR16 && flags & 1 << RELOC_WHICHBYTE) {
patch.rpnExpression.push_back(RPN_CONST);
patch.rpnExpression.push_back(8);
patch.rpnExpression.push_back(8 >> 8);
patch.rpnExpression.push_back(8 >> 16);
patch.rpnExpression.push_back(8 >> 24);
patch.rpnExpression.push_back(
(flags & 1 << RELOC_SIGNED) ? RPN_SHR : RPN_USHR
);
}
patch.rpnExpression.push_back(RPN_CONST);
patch.rpnExpression.push_back(0xFF);
patch.rpnExpression.push_back(0xFF >> 8);
patch.rpnExpression.push_back(0xFF >> 16);
patch.rpnExpression.push_back(0xFF >> 24);
patch.rpnExpression.push_back(RPN_AND);
}
} else if (flags & 1 << RELOC_ISPCREL) {
assert(patch.type == PATCHTYPE_WORD);
fatal(&where, lineNo, "16-bit PC-relative relocations are not supported");
} else if (flags & (1 << RELOC_EXPR16 | 1 << RELOC_EXPR24)) {
fatal(
&where,
lineNo,
"Flags 0x%x are not supported for 16-bit relocs",
flags & (1 << RELOC_EXPR16 | 1 << RELOC_EXPR24)
);
}
}
// If there is some data left to append, do so
if (writtenOfs != data.size()) {
assert(data.size() > writtenOfs);
if (*writeIndex + (data.size() - writtenOfs) > section->size)
fatal(
&where,
lineNo,
"'T' line writes past \"%s\"'s end (%zu > %" PRIu16 ")",
section->name.c_str(),
*writeIndex + (data.size() - writtenOfs),
section->size
);
memcpy(&section->data[*writeIndex], &data[writtenOfs], data.size() - writtenOfs);
*writeIndex += data.size() - writtenOfs;
}
data.clear(); // Do not allow two R lines to refer to the same T line
break;
}
case 'P':
default:
warning(&where, lineNo, "Unknown/unsupported line type '%c', ignoring", lineType);
break;
}
}
#undef expectEol
#undef expectToken
#undef getToken
if (!data.empty())
warning(&where, lineNo, "Last 'T' line had no 'R' line (ignored)");
if (fileSections.size() < expectedNbAreas)
warning(
&where,
lineNo,
"Expected %" PRIu32 " 'A' lines, got only %zu",
expectedNbAreas,
fileSections.size()
);
if (fileSymbols.size() < expectedNbSymbols)
warning(
&where,
lineNo,
"Expected %" PRIu32 " 'S' lines, got only %zu",
expectedNbSymbols,
fileSymbols.size()
);
nbSectionsToAssign += fileSections.size();
for (FileSection &entry : fileSections) {
std::unique_ptr<Section> &section = entry.section;
// RAM sections can have a size, but don't get any data (they shouldn't have any)
if (entry.writeIndex != section->size && entry.writeIndex != 0)
fatal(
&where,
lineNo,
"\"%s\" was not fully written (%" PRIu16 " < %" PRIu16 ")",
section->name.c_str(),
entry.writeIndex,
section->size
);
if (section->modifier == SECTION_FRAGMENT) {
// Add the fragment's offset to all of its symbols
for (Symbol *symbol : section->symbols)
symbol->label().offset += section->offset;
}
// Calling `sect_AddSection` invalidates the contents of `fileSections`!
sect_AddSection(std::move(section));
}
}