fix: quaternion multiplication and division

i hope its correct at least, quaternions are not my strength
This commit is contained in:
Jan 2024-05-10 22:55:22 +02:00
parent c74be5e8ae
commit 1c105db5bc
No known key found for this signature in database
GPG Key ID: 44B581F78FF5C57C
2 changed files with 53 additions and 14 deletions

View File

@ -204,7 +204,7 @@ namespace
{
const auto& parentBone = xmodel.m_bones[bone.parentIndex];
translation -= Vector3f(parentBone.globalOffset[0], parentBone.globalOffset[2], -parentBone.globalOffset[1]);
rotation -= Quaternion32(
rotation /= Quaternion32(
parentBone.globalRotation.m_x, parentBone.globalRotation.m_z, -parentBone.globalRotation.m_y, parentBone.globalRotation.m_w);
}
rotation.Normalize();

View File

@ -57,12 +57,41 @@ public:
return static_cast<T>((q1.m_x * q2.m_x) + (q1.m_y * q2.m_y) + (q1.m_z * q2.m_z) + (q1.m_w * q2.m_w));
}
T lengthSquared()
static Quaternion& conj(Quaternion& result)
{
result.m_x = -result.m_x;
result.m_y = -result.m_y;
result.m_z = -result.m_z;
return result;
}
static Quaternion& invert(Quaternion& result)
{
// from game programming gems p198
// do result = conj( q ) / norm( q )
Quaternion::conj(result);
// return if norm() is near 0 (divide by 0 would result in NaN)
T l = result.lengthSquared();
if (l < static_cast<T>(0.0001))
{
return result;
}
T l_inv = static_cast<T>(1.0) / l;
result.m_x *= l_inv;
result.m_y *= l_inv;
result.m_z *= l_inv;
result.m_w *= l_inv;
return result;
}
T lengthSquared() const
{
return Quaternion::dot(*this, *this);
}
T length()
T length() const
{
return sqrt(lengthSquared());
}
@ -114,31 +143,41 @@ public:
friend Quaternion operator*(const Quaternion& lhs, const Quaternion& rhs)
{
return Quaternion(lhs.m_x + rhs.m_x, lhs.m_y + rhs.m_y, lhs.m_z + rhs.m_z, lhs.m_w + rhs.m_w);
const T x2 = lhs.m_w * rhs.m_x + lhs.m_x * rhs.m_w + lhs.m_y * rhs.m_z - lhs.m_z * rhs.m_y;
const T y2 = lhs.m_w * rhs.m_y + lhs.m_y * rhs.m_w + lhs.m_z * rhs.m_x - lhs.m_x * rhs.m_z;
const T z2 = lhs.m_w * rhs.m_z + lhs.m_z * rhs.m_w + lhs.m_x * rhs.m_y - lhs.m_y * rhs.m_x;
const T w2 = lhs.m_w * rhs.m_w - lhs.m_x * rhs.m_x - lhs.m_y * rhs.m_y - lhs.m_z * rhs.m_z;
return Quaternion(x2, y2, z2, w2);
}
friend Quaternion operator/(const Quaternion& lhs, const Quaternion& rhs)
{
return Quaternion(lhs.m_x - rhs.m_x, lhs.m_y - rhs.m_y, lhs.m_z - rhs.m_z, lhs.m_w - rhs.m_w);
Quaternion rhsInv = rhs;
Quaternion::invert(rhsInv);
return lhs * rhsInv;
}
friend Quaternion& operator*=(Quaternion& lhs, const Quaternion& rhs)
{
lhs.m_x += rhs.m_x;
lhs.m_y += rhs.m_y;
lhs.m_z += rhs.m_z;
lhs.m_w += rhs.m_w;
const T x2 = lhs.m_w * rhs.m_x + lhs.m_x * rhs.m_w + lhs.m_y * rhs.m_z - lhs.m_z * rhs.m_y;
const T y2 = lhs.m_w * rhs.m_y + lhs.m_y * rhs.m_w + lhs.m_z * rhs.m_x - lhs.m_x * rhs.m_z;
const T z2 = lhs.m_w * rhs.m_z + lhs.m_z * rhs.m_w + lhs.m_x * rhs.m_y - lhs.m_y * rhs.m_x;
const T w2 = lhs.m_w * rhs.m_w - lhs.m_x * rhs.m_x - lhs.m_y * rhs.m_y - lhs.m_z * rhs.m_z;
lhs.m_x = x2;
lhs.m_y = y2;
lhs.m_z = z2;
lhs.m_w = w2;
return lhs;
}
friend Quaternion& operator/=(Quaternion& lhs, const Quaternion& rhs)
{
lhs.m_x -= rhs.m_x;
lhs.m_y -= rhs.m_y;
lhs.m_z -= rhs.m_z;
lhs.m_w -= rhs.m_w;
Quaternion rhsInv = rhs;
Quaternion::invert(rhsInv);
lhs *= rhsInv;
return lhs;
}
};