mirror of
https://github.com/Laupetin/OpenAssetTools.git
synced 2025-04-21 08:35:43 +00:00
808 lines
16 KiB
C
808 lines
16 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
|
|
*
|
|
* LibTomCrypt is a library that provides various cryptographic
|
|
* algorithms in a highly modular and flexible manner.
|
|
*
|
|
* The library is free for all purposes without any express
|
|
* guarantee it works.
|
|
*/
|
|
|
|
#define DESC_DEF_ONLY
|
|
#include "tomcrypt.h"
|
|
|
|
#ifdef TFM_DESC
|
|
|
|
#include <tfm.h>
|
|
|
|
static const struct {
|
|
int tfm_code, ltc_code;
|
|
} tfm_to_ltc_codes[] = {
|
|
{ FP_OKAY , CRYPT_OK},
|
|
{ FP_MEM , CRYPT_MEM},
|
|
{ FP_VAL , CRYPT_INVALID_ARG},
|
|
};
|
|
|
|
/**
|
|
Convert a tfm error to a LTC error (Possibly the most powerful function ever! Oh wait... no)
|
|
@param err The error to convert
|
|
@return The equivalent LTC error code or CRYPT_ERROR if none found
|
|
*/
|
|
static int tfm_to_ltc_error(int err)
|
|
{
|
|
int x;
|
|
|
|
for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) {
|
|
if (err == tfm_to_ltc_codes[x].tfm_code) {
|
|
return tfm_to_ltc_codes[x].ltc_code;
|
|
}
|
|
}
|
|
return CRYPT_ERROR;
|
|
}
|
|
|
|
static int init(void **a)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
|
|
*a = XCALLOC(1, sizeof(fp_int));
|
|
if (*a == NULL) {
|
|
return CRYPT_MEM;
|
|
}
|
|
fp_init(*a);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static void deinit(void *a)
|
|
{
|
|
LTC_ARGCHKVD(a != NULL);
|
|
XFREE(a);
|
|
}
|
|
|
|
static int neg(void *a, void *b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_neg(((fp_int*)a), ((fp_int*)b));
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static int copy(void *a, void *b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_copy(a, b);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static int init_copy(void **a, void *b)
|
|
{
|
|
if (init(a) != CRYPT_OK) {
|
|
return CRYPT_MEM;
|
|
}
|
|
return copy(b, *a);
|
|
}
|
|
|
|
/* ---- trivial ---- */
|
|
static int set_int(void *a, ltc_mp_digit b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
fp_set(a, b);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static unsigned long get_int(void *a)
|
|
{
|
|
fp_int *A;
|
|
LTC_ARGCHK(a != NULL);
|
|
A = a;
|
|
return A->used > 0 ? A->dp[0] : 0;
|
|
}
|
|
|
|
static ltc_mp_digit get_digit(void *a, int n)
|
|
{
|
|
fp_int *A;
|
|
LTC_ARGCHK(a != NULL);
|
|
A = a;
|
|
return (n >= A->used || n < 0) ? 0 : A->dp[n];
|
|
}
|
|
|
|
static int get_digit_count(void *a)
|
|
{
|
|
fp_int *A;
|
|
LTC_ARGCHK(a != NULL);
|
|
A = a;
|
|
return A->used;
|
|
}
|
|
|
|
static int compare(void *a, void *b)
|
|
{
|
|
int ret;
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
ret = fp_cmp(a, b);
|
|
switch (ret) {
|
|
case FP_LT: return LTC_MP_LT;
|
|
case FP_EQ: return LTC_MP_EQ;
|
|
case FP_GT: return LTC_MP_GT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int compare_d(void *a, ltc_mp_digit b)
|
|
{
|
|
int ret;
|
|
LTC_ARGCHK(a != NULL);
|
|
ret = fp_cmp_d(a, b);
|
|
switch (ret) {
|
|
case FP_LT: return LTC_MP_LT;
|
|
case FP_EQ: return LTC_MP_EQ;
|
|
case FP_GT: return LTC_MP_GT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int count_bits(void *a)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
return fp_count_bits(a);
|
|
}
|
|
|
|
static int count_lsb_bits(void *a)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
return fp_cnt_lsb(a);
|
|
}
|
|
|
|
static int twoexpt(void *a, int n)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
fp_2expt(a, n);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* ---- conversions ---- */
|
|
|
|
/* read ascii string */
|
|
static int read_radix(void *a, const char *b, int radix)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix));
|
|
}
|
|
|
|
/* write one */
|
|
static int write_radix(void *a, char *b, int radix)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
return tfm_to_ltc_error(fp_toradix(a, b, radix));
|
|
}
|
|
|
|
/* get size as unsigned char string */
|
|
static unsigned long unsigned_size(void *a)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
return fp_unsigned_bin_size(a);
|
|
}
|
|
|
|
/* store */
|
|
static int unsigned_write(void *a, unsigned char *b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_to_unsigned_bin(a, b);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* read */
|
|
static int unsigned_read(void *a, unsigned char *b, unsigned long len)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_read_unsigned_bin(a, b, len);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* add */
|
|
static int add(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_add(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static int addi(void *a, ltc_mp_digit b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_add_d(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* sub */
|
|
static int sub(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_sub(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static int subi(void *a, ltc_mp_digit b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_sub_d(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* mul */
|
|
static int mul(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_mul(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static int muli(void *a, ltc_mp_digit b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_mul_d(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* sqr */
|
|
static int sqr(void *a, void *b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_sqr(a, b);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* div */
|
|
static int divide(void *a, void *b, void *c, void *d)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
return tfm_to_ltc_error(fp_div(a, b, c, d));
|
|
}
|
|
|
|
static int div_2(void *a, void *b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_div_2(a, b);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* modi */
|
|
static int modi(void *a, ltc_mp_digit b, ltc_mp_digit *c)
|
|
{
|
|
fp_digit tmp;
|
|
int err;
|
|
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
|
|
if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
*c = tmp;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* gcd */
|
|
static int gcd(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_gcd(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* lcm */
|
|
static int lcm(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_lcm(a, b, c);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
static int addmod(void *a, void *b, void *c, void *d)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
LTC_ARGCHK(d != NULL);
|
|
return tfm_to_ltc_error(fp_addmod(a,b,c,d));
|
|
}
|
|
|
|
static int submod(void *a, void *b, void *c, void *d)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
LTC_ARGCHK(d != NULL);
|
|
return tfm_to_ltc_error(fp_submod(a,b,c,d));
|
|
}
|
|
|
|
static int mulmod(void *a, void *b, void *c, void *d)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
LTC_ARGCHK(d != NULL);
|
|
return tfm_to_ltc_error(fp_mulmod(a,b,c,d));
|
|
}
|
|
|
|
static int sqrmod(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
return tfm_to_ltc_error(fp_sqrmod(a,b,c));
|
|
}
|
|
|
|
/* invmod */
|
|
static int invmod(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
return tfm_to_ltc_error(fp_invmod(a, b, c));
|
|
}
|
|
|
|
/* setup */
|
|
static int montgomery_setup(void *a, void **b)
|
|
{
|
|
int err;
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
*b = XCALLOC(1, sizeof(fp_digit));
|
|
if (*b == NULL) {
|
|
return CRYPT_MEM;
|
|
}
|
|
if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) {
|
|
XFREE(*b);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* get normalization value */
|
|
static int montgomery_normalization(void *a, void *b)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
fp_montgomery_calc_normalization(a, b);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* reduce */
|
|
static int montgomery_reduce(void *a, void *b, void *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
fp_montgomery_reduce(a, b, *((fp_digit *)c));
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/* clean up */
|
|
static void montgomery_deinit(void *a)
|
|
{
|
|
XFREE(a);
|
|
}
|
|
|
|
static int exptmod(void *a, void *b, void *c, void *d)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(b != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
LTC_ARGCHK(d != NULL);
|
|
return tfm_to_ltc_error(fp_exptmod(a,b,c,d));
|
|
}
|
|
|
|
static int isprime(void *a, int b, int *c)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
LTC_ARGCHK(c != NULL);
|
|
if (b == 0) {
|
|
b = LTC_MILLER_RABIN_REPS;
|
|
} /* if */
|
|
*c = (fp_isprime_ex(a, b) == FP_YES) ? LTC_MP_YES : LTC_MP_NO;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#if defined(LTC_MECC) && defined(LTC_MECC_ACCEL)
|
|
|
|
static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp)
|
|
{
|
|
fp_int t1, t2;
|
|
fp_digit mp;
|
|
|
|
LTC_ARGCHK(P != NULL);
|
|
LTC_ARGCHK(R != NULL);
|
|
LTC_ARGCHK(modulus != NULL);
|
|
LTC_ARGCHK(Mp != NULL);
|
|
|
|
mp = *((fp_digit*)Mp);
|
|
|
|
fp_init(&t1);
|
|
fp_init(&t2);
|
|
|
|
if (P != R) {
|
|
fp_copy(P->x, R->x);
|
|
fp_copy(P->y, R->y);
|
|
fp_copy(P->z, R->z);
|
|
}
|
|
|
|
/* t1 = Z * Z */
|
|
fp_sqr(R->z, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
/* Z = Y * Z */
|
|
fp_mul(R->z, R->y, R->z);
|
|
fp_montgomery_reduce(R->z, modulus, mp);
|
|
/* Z = 2Z */
|
|
fp_add(R->z, R->z, R->z);
|
|
if (fp_cmp(R->z, modulus) != FP_LT) {
|
|
fp_sub(R->z, modulus, R->z);
|
|
}
|
|
|
|
/* &t2 = X - T1 */
|
|
fp_sub(R->x, &t1, &t2);
|
|
if (fp_cmp_d(&t2, 0) == FP_LT) {
|
|
fp_add(&t2, modulus, &t2);
|
|
}
|
|
/* T1 = X + T1 */
|
|
fp_add(&t1, R->x, &t1);
|
|
if (fp_cmp(&t1, modulus) != FP_LT) {
|
|
fp_sub(&t1, modulus, &t1);
|
|
}
|
|
/* T2 = T1 * T2 */
|
|
fp_mul(&t1, &t2, &t2);
|
|
fp_montgomery_reduce(&t2, modulus, mp);
|
|
/* T1 = 2T2 */
|
|
fp_add(&t2, &t2, &t1);
|
|
if (fp_cmp(&t1, modulus) != FP_LT) {
|
|
fp_sub(&t1, modulus, &t1);
|
|
}
|
|
/* T1 = T1 + T2 */
|
|
fp_add(&t1, &t2, &t1);
|
|
if (fp_cmp(&t1, modulus) != FP_LT) {
|
|
fp_sub(&t1, modulus, &t1);
|
|
}
|
|
|
|
/* Y = 2Y */
|
|
fp_add(R->y, R->y, R->y);
|
|
if (fp_cmp(R->y, modulus) != FP_LT) {
|
|
fp_sub(R->y, modulus, R->y);
|
|
}
|
|
/* Y = Y * Y */
|
|
fp_sqr(R->y, R->y);
|
|
fp_montgomery_reduce(R->y, modulus, mp);
|
|
/* T2 = Y * Y */
|
|
fp_sqr(R->y, &t2);
|
|
fp_montgomery_reduce(&t2, modulus, mp);
|
|
/* T2 = T2/2 */
|
|
if (fp_isodd(&t2)) {
|
|
fp_add(&t2, modulus, &t2);
|
|
}
|
|
fp_div_2(&t2, &t2);
|
|
/* Y = Y * X */
|
|
fp_mul(R->y, R->x, R->y);
|
|
fp_montgomery_reduce(R->y, modulus, mp);
|
|
|
|
/* X = T1 * T1 */
|
|
fp_sqr(&t1, R->x);
|
|
fp_montgomery_reduce(R->x, modulus, mp);
|
|
/* X = X - Y */
|
|
fp_sub(R->x, R->y, R->x);
|
|
if (fp_cmp_d(R->x, 0) == FP_LT) {
|
|
fp_add(R->x, modulus, R->x);
|
|
}
|
|
/* X = X - Y */
|
|
fp_sub(R->x, R->y, R->x);
|
|
if (fp_cmp_d(R->x, 0) == FP_LT) {
|
|
fp_add(R->x, modulus, R->x);
|
|
}
|
|
|
|
/* Y = Y - X */
|
|
fp_sub(R->y, R->x, R->y);
|
|
if (fp_cmp_d(R->y, 0) == FP_LT) {
|
|
fp_add(R->y, modulus, R->y);
|
|
}
|
|
/* Y = Y * T1 */
|
|
fp_mul(R->y, &t1, R->y);
|
|
fp_montgomery_reduce(R->y, modulus, mp);
|
|
/* Y = Y - T2 */
|
|
fp_sub(R->y, &t2, R->y);
|
|
if (fp_cmp_d(R->y, 0) == FP_LT) {
|
|
fp_add(R->y, modulus, R->y);
|
|
}
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Add two ECC points
|
|
@param P The point to add
|
|
@param Q The point to add
|
|
@param R [out] The destination of the double
|
|
@param modulus The modulus of the field the ECC curve is in
|
|
@param Mp The "b" value from montgomery_setup()
|
|
@return CRYPT_OK on success
|
|
*/
|
|
static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp)
|
|
{
|
|
fp_int t1, t2, x, y, z;
|
|
fp_digit mp;
|
|
|
|
LTC_ARGCHK(P != NULL);
|
|
LTC_ARGCHK(Q != NULL);
|
|
LTC_ARGCHK(R != NULL);
|
|
LTC_ARGCHK(modulus != NULL);
|
|
LTC_ARGCHK(Mp != NULL);
|
|
|
|
mp = *((fp_digit*)Mp);
|
|
|
|
fp_init(&t1);
|
|
fp_init(&t2);
|
|
fp_init(&x);
|
|
fp_init(&y);
|
|
fp_init(&z);
|
|
|
|
/* should we dbl instead? */
|
|
fp_sub(modulus, Q->y, &t1);
|
|
if ( (fp_cmp(P->x, Q->x) == FP_EQ) &&
|
|
(Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) &&
|
|
(fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) {
|
|
return tfm_ecc_projective_dbl_point(P, R, modulus, Mp);
|
|
}
|
|
|
|
fp_copy(P->x, &x);
|
|
fp_copy(P->y, &y);
|
|
fp_copy(P->z, &z);
|
|
|
|
/* if Z is one then these are no-operations */
|
|
if (Q->z != NULL) {
|
|
/* T1 = Z' * Z' */
|
|
fp_sqr(Q->z, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
/* X = X * T1 */
|
|
fp_mul(&t1, &x, &x);
|
|
fp_montgomery_reduce(&x, modulus, mp);
|
|
/* T1 = Z' * T1 */
|
|
fp_mul(Q->z, &t1, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
/* Y = Y * T1 */
|
|
fp_mul(&t1, &y, &y);
|
|
fp_montgomery_reduce(&y, modulus, mp);
|
|
}
|
|
|
|
/* T1 = Z*Z */
|
|
fp_sqr(&z, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
/* T2 = X' * T1 */
|
|
fp_mul(Q->x, &t1, &t2);
|
|
fp_montgomery_reduce(&t2, modulus, mp);
|
|
/* T1 = Z * T1 */
|
|
fp_mul(&z, &t1, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
/* T1 = Y' * T1 */
|
|
fp_mul(Q->y, &t1, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
|
|
/* Y = Y - T1 */
|
|
fp_sub(&y, &t1, &y);
|
|
if (fp_cmp_d(&y, 0) == FP_LT) {
|
|
fp_add(&y, modulus, &y);
|
|
}
|
|
/* T1 = 2T1 */
|
|
fp_add(&t1, &t1, &t1);
|
|
if (fp_cmp(&t1, modulus) != FP_LT) {
|
|
fp_sub(&t1, modulus, &t1);
|
|
}
|
|
/* T1 = Y + T1 */
|
|
fp_add(&t1, &y, &t1);
|
|
if (fp_cmp(&t1, modulus) != FP_LT) {
|
|
fp_sub(&t1, modulus, &t1);
|
|
}
|
|
/* X = X - T2 */
|
|
fp_sub(&x, &t2, &x);
|
|
if (fp_cmp_d(&x, 0) == FP_LT) {
|
|
fp_add(&x, modulus, &x);
|
|
}
|
|
/* T2 = 2T2 */
|
|
fp_add(&t2, &t2, &t2);
|
|
if (fp_cmp(&t2, modulus) != FP_LT) {
|
|
fp_sub(&t2, modulus, &t2);
|
|
}
|
|
/* T2 = X + T2 */
|
|
fp_add(&t2, &x, &t2);
|
|
if (fp_cmp(&t2, modulus) != FP_LT) {
|
|
fp_sub(&t2, modulus, &t2);
|
|
}
|
|
|
|
/* if Z' != 1 */
|
|
if (Q->z != NULL) {
|
|
/* Z = Z * Z' */
|
|
fp_mul(&z, Q->z, &z);
|
|
fp_montgomery_reduce(&z, modulus, mp);
|
|
}
|
|
|
|
/* Z = Z * X */
|
|
fp_mul(&z, &x, &z);
|
|
fp_montgomery_reduce(&z, modulus, mp);
|
|
|
|
/* T1 = T1 * X */
|
|
fp_mul(&t1, &x, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
/* X = X * X */
|
|
fp_sqr(&x, &x);
|
|
fp_montgomery_reduce(&x, modulus, mp);
|
|
/* T2 = T2 * x */
|
|
fp_mul(&t2, &x, &t2);
|
|
fp_montgomery_reduce(&t2, modulus, mp);
|
|
/* T1 = T1 * X */
|
|
fp_mul(&t1, &x, &t1);
|
|
fp_montgomery_reduce(&t1, modulus, mp);
|
|
|
|
/* X = Y*Y */
|
|
fp_sqr(&y, &x);
|
|
fp_montgomery_reduce(&x, modulus, mp);
|
|
/* X = X - T2 */
|
|
fp_sub(&x, &t2, &x);
|
|
if (fp_cmp_d(&x, 0) == FP_LT) {
|
|
fp_add(&x, modulus, &x);
|
|
}
|
|
|
|
/* T2 = T2 - X */
|
|
fp_sub(&t2, &x, &t2);
|
|
if (fp_cmp_d(&t2, 0) == FP_LT) {
|
|
fp_add(&t2, modulus, &t2);
|
|
}
|
|
/* T2 = T2 - X */
|
|
fp_sub(&t2, &x, &t2);
|
|
if (fp_cmp_d(&t2, 0) == FP_LT) {
|
|
fp_add(&t2, modulus, &t2);
|
|
}
|
|
/* T2 = T2 * Y */
|
|
fp_mul(&t2, &y, &t2);
|
|
fp_montgomery_reduce(&t2, modulus, mp);
|
|
/* Y = T2 - T1 */
|
|
fp_sub(&t2, &t1, &y);
|
|
if (fp_cmp_d(&y, 0) == FP_LT) {
|
|
fp_add(&y, modulus, &y);
|
|
}
|
|
/* Y = Y/2 */
|
|
if (fp_isodd(&y)) {
|
|
fp_add(&y, modulus, &y);
|
|
}
|
|
fp_div_2(&y, &y);
|
|
|
|
fp_copy(&x, R->x);
|
|
fp_copy(&y, R->y);
|
|
fp_copy(&z, R->z);
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
static int set_rand(void *a, int size)
|
|
{
|
|
LTC_ARGCHK(a != NULL);
|
|
fp_rand(a, size);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
const ltc_math_descriptor tfm_desc = {
|
|
|
|
"TomsFastMath",
|
|
(int)DIGIT_BIT,
|
|
|
|
&init,
|
|
&init_copy,
|
|
&deinit,
|
|
|
|
&neg,
|
|
©,
|
|
|
|
&set_int,
|
|
&get_int,
|
|
&get_digit,
|
|
&get_digit_count,
|
|
&compare,
|
|
&compare_d,
|
|
&count_bits,
|
|
&count_lsb_bits,
|
|
&twoexpt,
|
|
|
|
&read_radix,
|
|
&write_radix,
|
|
&unsigned_size,
|
|
&unsigned_write,
|
|
&unsigned_read,
|
|
|
|
&add,
|
|
&addi,
|
|
&sub,
|
|
&subi,
|
|
&mul,
|
|
&muli,
|
|
&sqr,
|
|
÷,
|
|
&div_2,
|
|
&modi,
|
|
&gcd,
|
|
&lcm,
|
|
|
|
&mulmod,
|
|
&sqrmod,
|
|
&invmod,
|
|
|
|
&montgomery_setup,
|
|
&montgomery_normalization,
|
|
&montgomery_reduce,
|
|
&montgomery_deinit,
|
|
|
|
&exptmod,
|
|
&isprime,
|
|
|
|
#ifdef LTC_MECC
|
|
#ifdef LTC_MECC_FP
|
|
<c_ecc_fp_mulmod,
|
|
#else
|
|
<c_ecc_mulmod,
|
|
#endif /* LTC_MECC_FP */
|
|
#ifdef LTC_MECC_ACCEL
|
|
&tfm_ecc_projective_add_point,
|
|
&tfm_ecc_projective_dbl_point,
|
|
#else
|
|
<c_ecc_projective_add_point,
|
|
<c_ecc_projective_dbl_point,
|
|
#endif /* LTC_MECC_ACCEL */
|
|
<c_ecc_map,
|
|
#ifdef LTC_ECC_SHAMIR
|
|
#ifdef LTC_MECC_FP
|
|
<c_ecc_fp_mul2add,
|
|
#else
|
|
<c_ecc_mul2add,
|
|
#endif /* LTC_MECC_FP */
|
|
#else
|
|
NULL,
|
|
#endif /* LTC_ECC_SHAMIR */
|
|
#else
|
|
NULL, NULL, NULL, NULL, NULL,
|
|
#endif /* LTC_MECC */
|
|
|
|
#ifdef LTC_MRSA
|
|
&rsa_make_key,
|
|
&rsa_exptmod,
|
|
#else
|
|
NULL, NULL,
|
|
#endif
|
|
&addmod,
|
|
&submod,
|
|
|
|
set_rand,
|
|
|
|
};
|
|
|
|
|
|
#endif
|
|
|
|
/* ref: HEAD -> master, tag: v1.18.2 */
|
|
/* git commit: 7e7eb695d581782f04b24dc444cbfde86af59853 */
|
|
/* commit time: 2018-07-01 22:49:01 +0200 */
|