Redefine the trig functions to divide circles into 1.0 turns (#1060)

This makes their behavior consistent across Q settings

Fixes #1059
This commit is contained in:
Rangi
2022-09-29 04:57:29 -04:00
committed by GitHub
parent 3567faf395
commit 023884d2b0
6 changed files with 72 additions and 35 deletions

View File

@@ -57,8 +57,8 @@ and ending with
.Ql */ .
It can be split across multiple lines, or occur in the middle of an expression:
.Bd -literal -offset indent
X = /* the value of x
should be 3 */ 3
DEF X = /* the value of x
should be 3 */ 3
.Ed
.Pp
Sometimes lines can be too long and it may be necessary to split them.
@@ -168,20 +168,20 @@ Valid print types are:
Examples:
.Bd -literal -offset indent
SECTION "Test", ROM0[2]
X: ;\ This works with labels **whose address is known**
Y = 3 ;\ This also works with variables
SUM equ X + Y ;\ And likewise with numeric constants
X: ;\ This works with labels **whose address is known**
DEF Y = 3 ;\ This also works with variables
DEF SUM EQU X + Y ;\ And likewise with numeric constants
; Prints "%0010 + $3 == 5"
PRINTLN "{#05b:X} + {#x:Y} == {d:SUM}"
rsset 32
PERCENT rb 1 ;\ Same with offset constants
VALUE = 20
RESULT = MUL(20.0, 0.32)
DEF PERCENT rb 1 ;\ Same with offset constants
DEF VALUE = 20
DEF RESULT = MUL(20.0, 0.32)
; Prints "32% of 20 = 6.40"
PRINTLN "{d:PERCENT}% of {d:VALUE} = {f:RESULT}"
WHO equs STRLWR("WORLD")
DEF WHO EQUS STRLWR("WORLD")
; Prints "Hello world!"
PRINTLN "Hello {s:WHO}!"
.Ed
@@ -350,18 +350,18 @@ The trigonometry functions (
.Ic SIN ,
.Ic COS ,
.Ic TAN ,
etc) are defined in terms of a circle divided into 65535.0 degrees.
etc) are defined in terms of a circle divided into 1.0 "turns" (equal to 2pi radians or 360 degrees).
.Pp
These functions are useful for automatic generation of various tables.
For example:
.Bd -literal -offset indent
; Generate a 256-byte sine table with values in the range [0, 128]
; (shifted and scaled from the range [-1.0, 1.0])
ANGLE = 0.0
REPT 256
db (MUL(64.0, SIN(ANGLE)) + 64.0) >> 16
ANGLE = ANGLE + 256.0 ; 256.0 = 65536 degrees / 256 entries
ENDR
; Generate a table of sine values from sin(0.0) to sin(1.0), with
; amplitude scaled from [-1.0, 1.0] to [0.0, 128.0]
DEF turns = 0.0
REPT 256
db MUL(64.0, SIN(turns) + 1.0) >> 16
DEF turns += 1.0 / 256
ENDR
.Ed
.Ss String expressions
The most basic string expression is any number of characters contained in double quotes
@@ -1011,7 +1011,7 @@ DEF ARRAY_SIZE EQU 4
DEF COUNT = 2
DEF COUNT = 3
DEF COUNT = ARRAY_SIZE + COUNT
COUNT = COUNT*2
DEF COUNT *= 2
;\ COUNT now has the value 14
.Ed
.Pp
@@ -1753,13 +1753,12 @@ You can also use
.Ic REPT
to generate tables on the fly:
.Bd -literal -offset indent
; Generate a 256-byte sine table with values in the range [0, 128]
; (shifted and scaled from the range [-1.0, 1.0])
ANGLE = 0.0
REPT 256
db (MUL(64.0, SIN(ANGLE)) + 64.0) >> 16
ANGLE = ANGLE + 256.0 ; 256.0 = 65536 degrees / 256 entries
ENDR
; Generate a table of square values from 0**2 = 0 to 100**2 = 10000
DEF x = 0
REPT 101
dw x * x
DEF x += 1
ENDR
.Ed
.Pp
As in macros, you can also use the escape sequence

View File

@@ -24,9 +24,9 @@
#define fix2double(i) ((double)((i) / fix_PrecisionFactor()))
#define double2fix(d) ((int32_t)round((d) * fix_PrecisionFactor()))
// pi*2 radians == 2**fixPrecision fixed-point "degrees"
#define fdeg2rad(f) ((f) * (M_PI * 2) / fix_PrecisionFactor())
#define rad2fdeg(r) ((r) * fix_PrecisionFactor() / (M_PI * 2))
// 2*pi radians == 1 turn
#define turn2rad(f) ((f) * (M_PI * 2))
#define rad2turn(r) ((r) / (M_PI * 2))
uint8_t fixPrecision;
@@ -51,37 +51,37 @@ void fix_Print(int32_t i)
int32_t fix_Sin(int32_t i)
{
return double2fix(sin(fdeg2rad(fix2double(i))));
return double2fix(sin(turn2rad(fix2double(i))));
}
int32_t fix_Cos(int32_t i)
{
return double2fix(cos(fdeg2rad(fix2double(i))));
return double2fix(cos(turn2rad(fix2double(i))));
}
int32_t fix_Tan(int32_t i)
{
return double2fix(tan(fdeg2rad(fix2double(i))));
return double2fix(tan(turn2rad(fix2double(i))));
}
int32_t fix_ASin(int32_t i)
{
return double2fix(rad2fdeg(asin(fix2double(i))));
return double2fix(rad2turn(asin(fix2double(i))));
}
int32_t fix_ACos(int32_t i)
{
return double2fix(rad2fdeg(acos(fix2double(i))));
return double2fix(rad2turn(acos(fix2double(i))));
}
int32_t fix_ATan(int32_t i)
{
return double2fix(rad2fdeg(atan(fix2double(i))));
return double2fix(rad2turn(atan(fix2double(i))));
}
int32_t fix_ATan2(int32_t i, int32_t j)
{
return double2fix(rad2fdeg(atan2(fix2double(i), fix2double(j))));
return double2fix(rad2turn(atan2(fix2double(i), fix2double(j))));
}
int32_t fix_Mul(int32_t i, int32_t j)

38
test/asm/trigonometry.asm Normal file
View File

@@ -0,0 +1,38 @@
for Q, 2, 31
OPT Q.{d:Q}
assert sin(0.25) == 1.0
assert asin(1.0) == 0.25
assert sin(0.0) == 0.0
assert asin(0.0) == 0.0
assert cos(0.0) == 1.0
assert acos(1.0) == 0.0
if Q > 2 ; can't represent 0.125 in Q.2
assert tan(0.125) == 1.0
assert atan(1.0) == 0.125
else
assert tan(0.0) == 0.0
assert atan(0.0) == 0.0
endc
endr
SECTION "sine", ROM0[0]
OPT Q.16
; Generate a table of sine values from sin(0.0) to sin(1.0), with
; amplitude scaled from [-1.0, 1.0] to [0.0, 128.0]
DEF turns = 0.0
REPT 256
db MUL(64.0, SIN(turns) + 1.0) >> 16
DEF turns += 1.0 / 256
ENDR
SECTION "cosine", ROM0[256]
OPT Q.8
; 32 samples of cos(x) from x=0 to x=pi radians=0.5 turns
for x, 0.0, 0.5, 0.5 / 32
dw cos(x)
endr

View File

View File

Binary file not shown.