mirror of
https://github.com/gbdev/rgbds.git
synced 2025-11-20 10:12:06 +00:00
2616 lines
64 KiB
C
2616 lines
64 KiB
C
/*
|
|
* This file is part of RGBDS.
|
|
*
|
|
* Copyright (c) 2020, Eldred Habert and RGBDS contributors.
|
|
*
|
|
* SPDX-License-Identifier: MIT
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#ifndef _MSC_VER
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include "extern/utf8decoder.h"
|
|
#include "platform.h" /* For `ssize_t` */
|
|
|
|
#include "asm/lexer.h"
|
|
#include "asm/format.h"
|
|
#include "asm/fstack.h"
|
|
#include "asm/macro.h"
|
|
#include "asm/main.h"
|
|
#include "asm/rpn.h"
|
|
#include "asm/symbol.h"
|
|
#include "asm/util.h"
|
|
#include "asm/warning.h"
|
|
/* Include this last so it gets all type & constant definitions */
|
|
#include "parser.h" /* For token definitions, generated from parser.y */
|
|
|
|
#ifdef LEXER_DEBUG
|
|
#define dbgPrint(...) fprintf(stderr, "[lexer] " __VA_ARGS__)
|
|
#else
|
|
#define dbgPrint(...)
|
|
#endif
|
|
|
|
/* Neither MSVC nor MinGW provide `mmap` */
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
# define WIN32_LEAN_AND_MEAN // include less from windows.h
|
|
# include <windows.h> // target architecture
|
|
# include <fileapi.h> // CreateFileA
|
|
# include <winbase.h> // CreateFileMappingA
|
|
# include <memoryapi.h> // MapViewOfFile
|
|
# include <handleapi.h> // CloseHandle
|
|
# define MAP_FAILED NULL
|
|
# define mapFile(ptr, fd, path, size) do { \
|
|
(ptr) = MAP_FAILED; \
|
|
HANDLE file = CreateFileA(path, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, \
|
|
FILE_FLAG_POSIX_SEMANTICS | FILE_FLAG_RANDOM_ACCESS, NULL); \
|
|
HANDLE mappingObj; \
|
|
\
|
|
if (file == INVALID_HANDLE_VALUE) \
|
|
break; \
|
|
mappingObj = CreateFileMappingA(file, NULL, PAGE_READONLY, 0, 0, NULL); \
|
|
if (mappingObj != INVALID_HANDLE_VALUE) \
|
|
(ptr) = MapViewOfFile(mappingObj, FILE_MAP_READ, 0, 0, 0); \
|
|
CloseHandle(mappingObj); \
|
|
CloseHandle(file); \
|
|
} while (0)
|
|
# define munmap(ptr, size) UnmapViewOfFile((ptr))
|
|
|
|
#else /* defined(_MSC_VER) || defined(__MINGW32__) */
|
|
|
|
# include <sys/mman.h>
|
|
# define mapFile(ptr, fd, path, size) do { \
|
|
(ptr) = mmap(NULL, (size), PROT_READ, MAP_PRIVATE, (fd), 0); \
|
|
\
|
|
if ((ptr) == MAP_FAILED && errno == ENOTSUP) { \
|
|
/*
|
|
* The implementation may not support MAP_PRIVATE; try again with MAP_SHARED
|
|
* instead, offering, I believe, weaker guarantees about external modifications to
|
|
* the file while reading it. That's still better than not opening it at all, though
|
|
*/ \
|
|
if (verbose) \
|
|
printf("mmap(%s, MAP_PRIVATE) failed, retrying with MAP_SHARED\n", path); \
|
|
(ptr) = mmap(NULL, (size), PROT_READ, MAP_SHARED, (fd), 0); \
|
|
} \
|
|
} while (0)
|
|
#endif /* !( defined(_MSC_VER) || defined(__MINGW32__) ) */
|
|
|
|
/*
|
|
* Identifiers that are also keywords are listed here. This ONLY applies to ones
|
|
* that would normally be matched as identifiers! Check out `yylex_NORMAL` to
|
|
* see how this is used.
|
|
* Tokens / keywords not handled here are handled in `yylex_NORMAL`'s switch.
|
|
*/
|
|
static struct KeywordMapping {
|
|
char const *name;
|
|
int token;
|
|
} const keywords[] = {
|
|
/*
|
|
* CAUTION when editing this: adding keywords will probably require extra nodes in the
|
|
* `keywordDict` array. If you forget to, you will probably trip up an assertion, anyways.
|
|
* Also, all entries in this array must be in uppercase for the dict to build correctly.
|
|
*/
|
|
{"ADC", T_Z80_ADC},
|
|
{"ADD", T_Z80_ADD},
|
|
{"AND", T_Z80_AND},
|
|
{"BIT", T_Z80_BIT},
|
|
{"CALL", T_Z80_CALL},
|
|
{"CCF", T_Z80_CCF},
|
|
{"CPL", T_Z80_CPL},
|
|
{"CP", T_Z80_CP},
|
|
{"DAA", T_Z80_DAA},
|
|
{"DEC", T_Z80_DEC},
|
|
{"DI", T_Z80_DI},
|
|
{"EI", T_Z80_EI},
|
|
{"HALT", T_Z80_HALT},
|
|
{"INC", T_Z80_INC},
|
|
{"JP", T_Z80_JP},
|
|
{"JR", T_Z80_JR},
|
|
{"LD", T_Z80_LD},
|
|
{"LDI", T_Z80_LDI},
|
|
{"LDD", T_Z80_LDD},
|
|
{"LDIO", T_Z80_LDH},
|
|
{"LDH", T_Z80_LDH},
|
|
{"NOP", T_Z80_NOP},
|
|
{"OR", T_Z80_OR},
|
|
{"POP", T_Z80_POP},
|
|
{"PUSH", T_Z80_PUSH},
|
|
{"RES", T_Z80_RES},
|
|
{"RETI", T_Z80_RETI},
|
|
{"RET", T_Z80_RET},
|
|
{"RLCA", T_Z80_RLCA},
|
|
{"RLC", T_Z80_RLC},
|
|
{"RLA", T_Z80_RLA},
|
|
{"RL", T_Z80_RL},
|
|
{"RRC", T_Z80_RRC},
|
|
{"RRCA", T_Z80_RRCA},
|
|
{"RRA", T_Z80_RRA},
|
|
{"RR", T_Z80_RR},
|
|
{"RST", T_Z80_RST},
|
|
{"SBC", T_Z80_SBC},
|
|
{"SCF", T_Z80_SCF},
|
|
{"SET", T_POP_SET},
|
|
{"SLA", T_Z80_SLA},
|
|
{"SRA", T_Z80_SRA},
|
|
{"SRL", T_Z80_SRL},
|
|
{"STOP", T_Z80_STOP},
|
|
{"SUB", T_Z80_SUB},
|
|
{"SWAP", T_Z80_SWAP},
|
|
{"XOR", T_Z80_XOR},
|
|
|
|
{"NZ", T_CC_NZ},
|
|
{"Z", T_CC_Z},
|
|
{"NC", T_CC_NC},
|
|
/* Handled after as T_TOKEN_C */
|
|
/* { "C", T_CC_C }, */
|
|
|
|
{"AF", T_MODE_AF},
|
|
{"BC", T_MODE_BC},
|
|
{"DE", T_MODE_DE},
|
|
{"HL", T_MODE_HL},
|
|
{"SP", T_MODE_SP},
|
|
{"HLD", T_MODE_HL_DEC},
|
|
{"HLI", T_MODE_HL_INC},
|
|
|
|
{"A", T_TOKEN_A},
|
|
{"B", T_TOKEN_B},
|
|
{"C", T_TOKEN_C},
|
|
{"D", T_TOKEN_D},
|
|
{"E", T_TOKEN_E},
|
|
{"H", T_TOKEN_H},
|
|
{"L", T_TOKEN_L},
|
|
|
|
{"DEF", T_OP_DEF},
|
|
|
|
{"FRAGMENT", T_POP_FRAGMENT},
|
|
{"BANK", T_OP_BANK},
|
|
{"ALIGN", T_OP_ALIGN},
|
|
|
|
{"ROUND", T_OP_ROUND},
|
|
{"CEIL", T_OP_CEIL},
|
|
{"FLOOR", T_OP_FLOOR},
|
|
{"DIV", T_OP_FDIV},
|
|
{"MUL", T_OP_FMUL},
|
|
{"POW", T_OP_POW},
|
|
{"LOG", T_OP_LOG},
|
|
{"SIN", T_OP_SIN},
|
|
{"COS", T_OP_COS},
|
|
{"TAN", T_OP_TAN},
|
|
{"ASIN", T_OP_ASIN},
|
|
{"ACOS", T_OP_ACOS},
|
|
{"ATAN", T_OP_ATAN},
|
|
{"ATAN2", T_OP_ATAN2},
|
|
|
|
{"HIGH", T_OP_HIGH},
|
|
{"LOW", T_OP_LOW},
|
|
{"ISCONST", T_OP_ISCONST},
|
|
|
|
{"STRCMP", T_OP_STRCMP},
|
|
{"STRIN", T_OP_STRIN},
|
|
{"STRRIN", T_OP_STRRIN},
|
|
{"STRSUB", T_OP_STRSUB},
|
|
{"STRLEN", T_OP_STRLEN},
|
|
{"STRCAT", T_OP_STRCAT},
|
|
{"STRUPR", T_OP_STRUPR},
|
|
{"STRLWR", T_OP_STRLWR},
|
|
{"STRRPL", T_OP_STRRPL},
|
|
{"STRFMT", T_OP_STRFMT},
|
|
|
|
{"INCLUDE", T_POP_INCLUDE},
|
|
{"PRINT", T_POP_PRINT},
|
|
{"PRINTLN", T_POP_PRINTLN},
|
|
{"PRINTT", T_POP_PRINTT},
|
|
{"PRINTI", T_POP_PRINTI},
|
|
{"PRINTV", T_POP_PRINTV},
|
|
{"PRINTF", T_POP_PRINTF},
|
|
{"EXPORT", T_POP_EXPORT},
|
|
{"DS", T_POP_DS},
|
|
{"DB", T_POP_DB},
|
|
{"DW", T_POP_DW},
|
|
{"DL", T_POP_DL},
|
|
{"SECTION", T_POP_SECTION},
|
|
{"PURGE", T_POP_PURGE},
|
|
|
|
{"RSRESET", T_POP_RSRESET},
|
|
{"RSSET", T_POP_RSSET},
|
|
|
|
{"INCBIN", T_POP_INCBIN},
|
|
{"CHARMAP", T_POP_CHARMAP},
|
|
{"NEWCHARMAP", T_POP_NEWCHARMAP},
|
|
{"SETCHARMAP", T_POP_SETCHARMAP},
|
|
{"PUSHC", T_POP_PUSHC},
|
|
{"POPC", T_POP_POPC},
|
|
|
|
{"FAIL", T_POP_FAIL},
|
|
{"WARN", T_POP_WARN},
|
|
{"FATAL", T_POP_FATAL},
|
|
{"ASSERT", T_POP_ASSERT},
|
|
{"STATIC_ASSERT", T_POP_STATIC_ASSERT},
|
|
|
|
{"MACRO", T_POP_MACRO},
|
|
{"ENDM", T_POP_ENDM},
|
|
{"SHIFT", T_POP_SHIFT},
|
|
|
|
{"REPT", T_POP_REPT},
|
|
{"FOR", T_POP_FOR},
|
|
{"ENDR", T_POP_ENDR},
|
|
{"BREAK", T_POP_BREAK},
|
|
|
|
{"LOAD", T_POP_LOAD},
|
|
{"ENDL", T_POP_ENDL},
|
|
|
|
{"IF", T_POP_IF},
|
|
{"ELSE", T_POP_ELSE},
|
|
{"ELIF", T_POP_ELIF},
|
|
{"ENDC", T_POP_ENDC},
|
|
|
|
{"UNION", T_POP_UNION},
|
|
{"NEXTU", T_POP_NEXTU},
|
|
{"ENDU", T_POP_ENDU},
|
|
|
|
{"WRAM0", T_SECT_WRAM0},
|
|
{"VRAM", T_SECT_VRAM},
|
|
{"ROMX", T_SECT_ROMX},
|
|
{"ROM0", T_SECT_ROM0},
|
|
{"HRAM", T_SECT_HRAM},
|
|
{"WRAMX", T_SECT_WRAMX},
|
|
{"SRAM", T_SECT_SRAM},
|
|
{"OAM", T_SECT_OAM},
|
|
|
|
{"RB", T_POP_RB},
|
|
{"RW", T_POP_RW},
|
|
/* Handled before as T_Z80_RL */
|
|
/* {"RL", T_POP_RL}, */
|
|
{"EQU", T_POP_EQU},
|
|
{"EQUS", T_POP_EQUS},
|
|
{"REDEF", T_POP_REDEF},
|
|
|
|
/* Handled before as T_Z80_SET */
|
|
/* {"SET", T_POP_SET}, */
|
|
|
|
{"PUSHS", T_POP_PUSHS},
|
|
{"POPS", T_POP_POPS},
|
|
{"PUSHO", T_POP_PUSHO},
|
|
{"POPO", T_POP_POPO},
|
|
|
|
{"OPT", T_POP_OPT},
|
|
|
|
{".", T_PERIOD},
|
|
};
|
|
|
|
static bool isWhitespace(int c)
|
|
{
|
|
return c == ' ' || c == '\t';
|
|
}
|
|
|
|
#define LEXER_BUF_SIZE 42 /* TODO: determine a sane value for this */
|
|
/* This caps the size of buffer reads, and according to POSIX, passing more than SSIZE_MAX is UB */
|
|
static_assert(LEXER_BUF_SIZE <= SSIZE_MAX, "Lexer buffer size is too large");
|
|
|
|
struct Expansion {
|
|
struct Expansion *firstChild;
|
|
struct Expansion *next;
|
|
char *name;
|
|
union {
|
|
char const *unowned;
|
|
char *owned;
|
|
} contents;
|
|
size_t len;
|
|
size_t totalLen;
|
|
size_t distance; /* Distance between the beginning of this expansion and of its parent */
|
|
uint8_t skip; /* How many extra characters to skip after the expansion is over */
|
|
bool owned; /* Whether or not to free contents when this expansion is freed */
|
|
};
|
|
|
|
struct IfStack {
|
|
struct IfStack *next;
|
|
bool ranIfBlock; /* Whether an IF/ELIF/ELSE block ran already */
|
|
bool reachedElseBlock; /* Whether an ELSE block ran already */
|
|
};
|
|
|
|
struct LexerState {
|
|
char const *path;
|
|
|
|
/* mmap()-dependent IO state */
|
|
bool isMmapped;
|
|
union {
|
|
struct { /* If mmap()ed */
|
|
char *ptr; /* Technically `const` during the lexer's execution */
|
|
off_t size;
|
|
off_t offset;
|
|
bool isReferenced; /* If a macro in this file requires not unmapping it */
|
|
};
|
|
struct { /* Otherwise */
|
|
int fd;
|
|
size_t index; /* Read index into the buffer */
|
|
char buf[LEXER_BUF_SIZE]; /* Circular buffer */
|
|
size_t nbChars; /* Number of "fresh" chars in the buffer */
|
|
};
|
|
};
|
|
|
|
/* Common state */
|
|
bool isFile;
|
|
|
|
enum LexerMode mode;
|
|
bool atLineStart;
|
|
uint32_t lineNo;
|
|
uint32_t colNo;
|
|
int lastToken;
|
|
|
|
struct IfStack *ifStack;
|
|
|
|
bool capturing; /* Whether the text being lexed should be captured */
|
|
size_t captureSize; /* Amount of text captured */
|
|
char *captureBuf; /* Buffer to send the captured text to if non-NULL */
|
|
size_t captureCapacity; /* Size of the buffer above */
|
|
|
|
bool disableMacroArgs;
|
|
bool disableInterpolation;
|
|
size_t macroArgScanDistance; /* Max distance already scanned for macro args */
|
|
bool expandStrings;
|
|
struct Expansion *expansions;
|
|
size_t expansionOfs; /* Offset into the current top-level expansion (negative = before) */
|
|
};
|
|
|
|
struct LexerState *lexerState = NULL;
|
|
struct LexerState *lexerStateEOL = NULL;
|
|
|
|
static void initState(struct LexerState *state)
|
|
{
|
|
state->mode = LEXER_NORMAL;
|
|
state->atLineStart = true; /* yylex() will init colNo due to this */
|
|
state->lastToken = T_EOF;
|
|
|
|
state->ifStack = NULL;
|
|
|
|
state->capturing = false;
|
|
state->captureBuf = NULL;
|
|
|
|
state->disableMacroArgs = false;
|
|
state->disableInterpolation = false;
|
|
state->macroArgScanDistance = 0;
|
|
state->expandStrings = true;
|
|
state->expansions = NULL;
|
|
state->expansionOfs = 0;
|
|
}
|
|
|
|
static void nextLine(void)
|
|
{
|
|
lexerState->lineNo++;
|
|
lexerState->colNo = 1;
|
|
}
|
|
|
|
uint32_t lexer_GetIFDepth(void)
|
|
{
|
|
uint32_t depth = 0;
|
|
|
|
for (struct IfStack *stack = lexerState->ifStack; stack != NULL; stack = stack->next)
|
|
depth++;
|
|
|
|
return depth;
|
|
}
|
|
|
|
void lexer_IncIFDepth(void)
|
|
{
|
|
struct IfStack *new = malloc(sizeof(*new));
|
|
|
|
if (!new)
|
|
fatalerror("Unable to allocate new IF depth: %s\n", strerror(errno));
|
|
|
|
new->ranIfBlock = false;
|
|
new->reachedElseBlock = false;
|
|
new->next = lexerState->ifStack;
|
|
|
|
lexerState->ifStack = new;
|
|
}
|
|
|
|
void lexer_DecIFDepth(void)
|
|
{
|
|
if (!lexerState->ifStack)
|
|
fatalerror("Found ENDC outside an IF construct\n");
|
|
|
|
struct IfStack *top = lexerState->ifStack->next;
|
|
|
|
free(lexerState->ifStack);
|
|
|
|
lexerState->ifStack = top;
|
|
}
|
|
|
|
bool lexer_RanIFBlock(void)
|
|
{
|
|
return lexerState->ifStack->ranIfBlock;
|
|
}
|
|
|
|
bool lexer_ReachedELSEBlock(void)
|
|
{
|
|
return lexerState->ifStack->reachedElseBlock;
|
|
}
|
|
|
|
void lexer_RunIFBlock(void)
|
|
{
|
|
lexerState->ifStack->ranIfBlock = true;
|
|
}
|
|
|
|
void lexer_ReachELSEBlock(void)
|
|
{
|
|
lexerState->ifStack->reachedElseBlock = true;
|
|
}
|
|
|
|
struct LexerState *lexer_OpenFile(char const *path)
|
|
{
|
|
dbgPrint("Opening file \"%s\"\n", path);
|
|
|
|
bool isStdin = !strcmp(path, "-");
|
|
struct LexerState *state = malloc(sizeof(*state));
|
|
struct stat fileInfo;
|
|
|
|
/* Give stdin a nicer file name */
|
|
if (isStdin)
|
|
path = "<stdin>";
|
|
if (!state) {
|
|
error("Failed to allocate memory for lexer state: %s\n", strerror(errno));
|
|
return NULL;
|
|
}
|
|
if (!isStdin && stat(path, &fileInfo) != 0) {
|
|
error("Failed to stat file \"%s\": %s\n", path, strerror(errno));
|
|
free(state);
|
|
return NULL;
|
|
}
|
|
state->path = path;
|
|
state->isFile = true;
|
|
state->fd = isStdin ? STDIN_FILENO : open(path, O_RDONLY);
|
|
state->isMmapped = false; /* By default, assume it won't be mmap()ed */
|
|
if (!isStdin && fileInfo.st_size > 0) {
|
|
/* Try using `mmap` for better performance */
|
|
|
|
/*
|
|
* Important: do NOT assign to `state->ptr` directly, to avoid a cast that may
|
|
* alter an eventual `MAP_FAILED` value. It would also invalidate `state->fd`,
|
|
* being on the other side of the union.
|
|
*/
|
|
void *mappingAddr;
|
|
|
|
mapFile(mappingAddr, state->fd, state->path, fileInfo.st_size);
|
|
if (mappingAddr == MAP_FAILED) {
|
|
/* If mmap()ing failed, try again using another method (below) */
|
|
state->isMmapped = false;
|
|
} else {
|
|
/* IMPORTANT: the `union` mandates this is accessed before other members! */
|
|
close(state->fd);
|
|
|
|
state->isMmapped = true;
|
|
state->isReferenced = false; // By default, a state isn't referenced
|
|
state->ptr = mappingAddr;
|
|
state->size = fileInfo.st_size;
|
|
state->offset = 0;
|
|
|
|
if (verbose)
|
|
printf("File %s successfully mmap()ped\n", path);
|
|
}
|
|
}
|
|
if (!state->isMmapped) {
|
|
/* Sometimes mmap() fails or isn't available, so have a fallback */
|
|
if (verbose)
|
|
printf("File %s opened as regular, errno reports \"%s\"\n",
|
|
path, strerror(errno));
|
|
state->index = 0;
|
|
state->nbChars = 0;
|
|
}
|
|
|
|
initState(state);
|
|
state->lineNo = 0; /* Will be incremented at first line start */
|
|
return state;
|
|
}
|
|
|
|
struct LexerState *lexer_OpenFileView(char *buf, size_t size, uint32_t lineNo)
|
|
{
|
|
dbgPrint("Opening view on buffer \"%.*s\"[...]\n", size < 16 ? (int)size : 16, buf);
|
|
|
|
struct LexerState *state = malloc(sizeof(*state));
|
|
|
|
if (!state) {
|
|
error("Failed to allocate memory for lexer state: %s\n", strerror(errno));
|
|
return NULL;
|
|
}
|
|
// TODO: init `path`
|
|
|
|
state->isFile = false;
|
|
state->isMmapped = true; /* It's not *really* mmap()ed, but it behaves the same */
|
|
state->ptr = buf;
|
|
state->size = size;
|
|
state->offset = 0;
|
|
|
|
initState(state);
|
|
state->lineNo = lineNo; /* Will be incremented at first line start */
|
|
return state;
|
|
}
|
|
|
|
void lexer_RestartRept(uint32_t lineNo)
|
|
{
|
|
dbgPrint("Restarting REPT/FOR\n");
|
|
lexerState->offset = 0;
|
|
initState(lexerState);
|
|
lexerState->lineNo = lineNo;
|
|
}
|
|
|
|
void lexer_DeleteState(struct LexerState *state)
|
|
{
|
|
// A big chunk of the lexer state soundness is the file stack ("fstack").
|
|
// Each context in the fstack has its own *unique* lexer state; thus, we always guarantee
|
|
// that lexer states lifetimes are always properly managed, since they're handled solely
|
|
// by the fstack... with *one* exception.
|
|
// Assume a context is pushed on top of the fstack, and the corresponding lexer state gets
|
|
// scheduled at EOF; `lexerStateAtEOL` thus becomes a (weak) ref to that lexer state...
|
|
// It has been possible, due to a bug, that the corresponding fstack context gets popped
|
|
// before EOL, deleting the associated state... but it would still be switched to at EOL.
|
|
// This assertion checks that this doesn't happen again.
|
|
// It could be argued that deleting a state that's scheduled for EOF could simply clear
|
|
// `lexerStateEOL`, but there's currently no situation in which this should happen.
|
|
assert(state != lexerStateEOL);
|
|
|
|
if (!state->isMmapped)
|
|
close(state->fd);
|
|
else if (state->isFile && !state->isReferenced)
|
|
munmap(state->ptr, state->size);
|
|
free(state);
|
|
}
|
|
|
|
struct KeywordDictNode {
|
|
/*
|
|
* The identifier charset is (currently) 44 characters big. By storing entries for the
|
|
* entire printable ASCII charset, minus lower-case due to case-insensitivity,
|
|
* we only waste (0x60 - 0x20) - 70 = 20 entries per node, which should be acceptable.
|
|
* In turn, this allows greatly simplifying checking an index into this array,
|
|
* which should help speed up the lexer.
|
|
*/
|
|
uint16_t children[0x60 - ' '];
|
|
struct KeywordMapping const *keyword;
|
|
/* Since the keyword structure is invariant, the min number of nodes is known at compile time */
|
|
} keywordDict[351] = {0}; /* Make sure to keep this correct when adding keywords! */
|
|
|
|
/* Convert a char into its index into the dict */
|
|
static inline uint8_t dictIndex(char c)
|
|
{
|
|
/* Translate uppercase to lowercase (roughly) */
|
|
if (c > 0x60)
|
|
c = c - ('a' - 'A');
|
|
return c - ' ';
|
|
}
|
|
|
|
void lexer_Init(void)
|
|
{
|
|
/*
|
|
* Build the dictionary of keywords. This could be done at compile time instead, however:
|
|
* - Doing so manually is a task nobody wants to undertake
|
|
* - It would be massively hard to read
|
|
* - Doing it within CC or CPP would be quite non-trivial
|
|
* - Doing it externally would require some extra work to use only POSIX tools
|
|
* - The startup overhead isn't much compared to the program's
|
|
*/
|
|
uint16_t usedNodes = 1;
|
|
|
|
for (size_t i = 0; i < sizeof(keywords) / sizeof(*keywords); i++) {
|
|
uint16_t nodeID = 0;
|
|
|
|
/* Walk the dictionary, creating intermediate nodes for the keyword */
|
|
for (char const *ptr = keywords[i].name; *ptr; ptr++) {
|
|
/* We should be able to assume all entries are well-formed */
|
|
if (keywordDict[nodeID].children[*ptr - ' '] == 0) {
|
|
/*
|
|
* If this gets tripped up, set the size of keywordDict to
|
|
* something high, compile with `-DPRINT_NODE_COUNT` (see below),
|
|
* and set the size to that.
|
|
*/
|
|
assert(usedNodes < sizeof(keywordDict) / sizeof(*keywordDict));
|
|
|
|
/* There is no node at that location, grab one from the pool */
|
|
keywordDict[nodeID].children[*ptr - ' '] = usedNodes;
|
|
usedNodes++;
|
|
}
|
|
nodeID = keywordDict[nodeID].children[*ptr - ' '];
|
|
}
|
|
|
|
/* This assumes that no two keywords have the same name */
|
|
keywordDict[nodeID].keyword = &keywords[i];
|
|
}
|
|
|
|
#ifdef PRINT_NODE_COUNT /* For the maintainer to check how many nodes are needed */
|
|
printf("Lexer keyword dictionary: %zu keywords in %u nodes (pool size %zu)\n",
|
|
sizeof(keywords) / sizeof(*keywords), usedNodes,
|
|
sizeof(keywordDict) / sizeof(*keywordDict));
|
|
#endif
|
|
}
|
|
|
|
void lexer_SetMode(enum LexerMode mode)
|
|
{
|
|
lexerState->mode = mode;
|
|
}
|
|
|
|
void lexer_ToggleStringExpansion(bool enable)
|
|
{
|
|
lexerState->expandStrings = enable;
|
|
}
|
|
|
|
/* Functions for the actual lexer to obtain characters */
|
|
|
|
static void reallocCaptureBuf(void)
|
|
{
|
|
if (lexerState->captureCapacity == SIZE_MAX)
|
|
fatalerror("Cannot grow capture buffer past %zu bytes\n", SIZE_MAX);
|
|
else if (lexerState->captureCapacity > SIZE_MAX / 2)
|
|
lexerState->captureCapacity = SIZE_MAX;
|
|
else
|
|
lexerState->captureCapacity *= 2;
|
|
lexerState->captureBuf = realloc(lexerState->captureBuf, lexerState->captureCapacity);
|
|
if (!lexerState->captureBuf)
|
|
fatalerror("realloc error while resizing capture buffer: %s\n", strerror(errno));
|
|
}
|
|
|
|
/*
|
|
* The multiple evaluations of `retvar` causing side effects is INTENTIONAL, and
|
|
* required for example by `lexer_dumpStringExpansions`. It is however only
|
|
* evaluated once per level, and only then.
|
|
*
|
|
* This uses the concept of "X macros": you must #define LOOKUP_PRE_NEST and
|
|
* LOOKUP_POST_NEST before invoking this (and #undef them right after), and
|
|
* those macros will be expanded at the corresponding points in the loop.
|
|
* This is necessary because there are at least 3 places which need to iterate
|
|
* through iterations while performing custom actions
|
|
*/
|
|
#define lookupExpansion(retvar, dist) do { \
|
|
struct Expansion *exp = lexerState->expansions; \
|
|
\
|
|
for (;;) { \
|
|
/* Find the closest expansion whose end is after the target */ \
|
|
while (exp && exp->totalLen + exp->distance <= (dist)) { \
|
|
(dist) -= exp->totalLen + exp->skip; \
|
|
exp = exp->next; \
|
|
} \
|
|
\
|
|
/* If there is none, or it begins after the target, return the previous level */ \
|
|
if (!exp || exp->distance > (dist)) \
|
|
break; \
|
|
\
|
|
/* We know we are inside of that expansion */ \
|
|
(dist) -= exp->distance; /* Distances are relative to their parent */ \
|
|
\
|
|
/* Otherwise, register this expansion and repeat the process */ \
|
|
LOOKUP_PRE_NEST(exp); \
|
|
(retvar) = exp; \
|
|
if (!exp->firstChild) /* If there are no children, this is it */ \
|
|
break; \
|
|
exp = exp->firstChild; \
|
|
\
|
|
LOOKUP_POST_NEST(exp); \
|
|
} \
|
|
} while (0)
|
|
|
|
static struct Expansion *getExpansionAtDistance(size_t *distance)
|
|
{
|
|
struct Expansion *expansion = NULL; /* Top level has no "previous" level */
|
|
|
|
#define LOOKUP_PRE_NEST(exp)
|
|
#define LOOKUP_POST_NEST(exp)
|
|
struct Expansion *exp = lexerState->expansions;
|
|
|
|
for (;;) {
|
|
/* Find the closest expansion whose end is after the target */
|
|
while (exp && exp->totalLen + exp->distance <= *distance) {
|
|
*distance -= exp->totalLen - exp->skip;
|
|
exp = exp->next;
|
|
}
|
|
|
|
/* If there is none, or it begins after the target, return the previous level */
|
|
if (!exp || exp->distance > *distance)
|
|
break;
|
|
|
|
/* We know we are inside of that expansion */
|
|
*distance -= exp->distance; /* Distances are relative to their parent */
|
|
|
|
/* Otherwise, register this expansion and repeat the process */
|
|
LOOKUP_PRE_NEST(exp);
|
|
expansion = exp;
|
|
if (!exp->firstChild) /* If there are no children, this is it */
|
|
break;
|
|
exp = exp->firstChild;
|
|
|
|
LOOKUP_POST_NEST(exp);
|
|
}
|
|
#undef LOOKUP_PRE_NEST
|
|
#undef LOOKUP_POST_NEST
|
|
|
|
return expansion;
|
|
}
|
|
|
|
static void beginExpansion(size_t distance, uint8_t skip,
|
|
char const *str, size_t size, bool owned,
|
|
char const *name)
|
|
{
|
|
distance += lexerState->expansionOfs; /* Distance argument is relative to read offset! */
|
|
/* Increase the total length of all parents, and return the topmost one */
|
|
struct Expansion *parent = NULL;
|
|
unsigned int depth = 0;
|
|
|
|
#define LOOKUP_PRE_NEST(exp) (exp)->totalLen += size - skip
|
|
#define LOOKUP_POST_NEST(exp) do { \
|
|
if (name && ++depth >= nMaxRecursionDepth) \
|
|
fatalerror("Recursion limit (%zu) exceeded\n", nMaxRecursionDepth); \
|
|
} while (0)
|
|
lookupExpansion(parent, distance);
|
|
#undef LOOKUP_PRE_NEST
|
|
#undef LOOKUP_POST_NEST
|
|
struct Expansion **insertPoint = parent ? &parent->firstChild : &lexerState->expansions;
|
|
|
|
/* We know we are in none of the children expansions: add ourselves, keeping it sorted */
|
|
while (*insertPoint && (*insertPoint)->distance < distance)
|
|
insertPoint = &(*insertPoint)->next;
|
|
|
|
*insertPoint = malloc(sizeof(**insertPoint));
|
|
if (!*insertPoint)
|
|
fatalerror("Unable to allocate new expansion: %s\n", strerror(errno));
|
|
(*insertPoint)->firstChild = NULL;
|
|
(*insertPoint)->next = NULL; /* Expansions are always performed left to right */
|
|
(*insertPoint)->name = name ? strdup(name) : NULL;
|
|
(*insertPoint)->contents.unowned = str;
|
|
(*insertPoint)->len = size;
|
|
(*insertPoint)->totalLen = size;
|
|
(*insertPoint)->distance = distance;
|
|
(*insertPoint)->skip = skip;
|
|
(*insertPoint)->owned = owned;
|
|
|
|
/* If expansion is the new closest one, update offset */
|
|
if (insertPoint == &lexerState->expansions)
|
|
lexerState->expansionOfs = 0;
|
|
}
|
|
|
|
static void freeExpansion(struct Expansion *expansion)
|
|
{
|
|
struct Expansion *child = expansion->firstChild;
|
|
|
|
while (child) {
|
|
struct Expansion *next = child->next;
|
|
|
|
freeExpansion(child);
|
|
child = next;
|
|
}
|
|
free(expansion->name);
|
|
if (expansion->owned)
|
|
free(expansion->contents.owned);
|
|
free(expansion);
|
|
}
|
|
|
|
static bool isMacroChar(char c)
|
|
{
|
|
return c == '@' || c == '#' || (c >= '0' && c <= '9');
|
|
}
|
|
|
|
static char const *readMacroArg(char name)
|
|
{
|
|
char const *str;
|
|
|
|
if (name == '@')
|
|
str = macro_GetUniqueIDStr();
|
|
else if (name == '#')
|
|
str = macro_GetAllArgs();
|
|
else if (name == '0')
|
|
fatalerror("Invalid macro argument '\\0'\n");
|
|
else
|
|
str = macro_GetArg(name - '0');
|
|
if (!str)
|
|
fatalerror("Macro argument '\\%c' not defined\n", name);
|
|
|
|
return str;
|
|
}
|
|
|
|
/* If at any point we need more than 255 characters of lookahead, something went VERY wrong. */
|
|
static int peekInternal(uint8_t distance)
|
|
{
|
|
if (distance >= LEXER_BUF_SIZE)
|
|
fatalerror("Internal lexer error: buffer has insufficient size for peeking (%"
|
|
PRIu8 " >= %u)\n", distance, LEXER_BUF_SIZE);
|
|
|
|
size_t ofs = lexerState->expansionOfs + distance;
|
|
struct Expansion const *expansion = getExpansionAtDistance(&ofs);
|
|
|
|
if (expansion) {
|
|
assert(ofs < expansion->len);
|
|
return expansion->contents.unowned[ofs];
|
|
}
|
|
|
|
distance = ofs;
|
|
|
|
if (lexerState->isMmapped) {
|
|
if (lexerState->offset + distance >= lexerState->size)
|
|
return EOF;
|
|
|
|
return (unsigned char)lexerState->ptr[lexerState->offset + distance];
|
|
}
|
|
|
|
if (lexerState->nbChars <= distance) {
|
|
/* Buffer isn't full enough, read some chars in */
|
|
size_t target = LEXER_BUF_SIZE - lexerState->nbChars; /* Aim: making the buf full */
|
|
|
|
/* Compute the index we'll start writing to */
|
|
size_t writeIndex = (lexerState->index + lexerState->nbChars) % LEXER_BUF_SIZE;
|
|
ssize_t nbCharsRead = 0, totalCharsRead = 0;
|
|
|
|
#define readChars(size) do { \
|
|
/* This buffer overflow made me lose WEEKS of my life. Never again. */ \
|
|
assert(writeIndex + (size) <= LEXER_BUF_SIZE); \
|
|
nbCharsRead = read(lexerState->fd, &lexerState->buf[writeIndex], (size)); \
|
|
if (nbCharsRead == -1) \
|
|
fatalerror("Error while reading \"%s\": %s\n", lexerState->path, strerror(errno)); \
|
|
totalCharsRead += nbCharsRead; \
|
|
writeIndex += nbCharsRead; \
|
|
if (writeIndex == LEXER_BUF_SIZE) \
|
|
writeIndex = 0; \
|
|
target -= nbCharsRead; \
|
|
} while (0)
|
|
|
|
/* If the range to fill passes over the buffer wrapping point, we need two reads */
|
|
if (writeIndex + target > LEXER_BUF_SIZE) {
|
|
size_t nbExpectedChars = LEXER_BUF_SIZE - writeIndex;
|
|
|
|
readChars(nbExpectedChars);
|
|
/* If the read was incomplete, don't perform a second read */
|
|
if (nbCharsRead < nbExpectedChars)
|
|
target = 0;
|
|
}
|
|
if (target != 0)
|
|
readChars(target);
|
|
|
|
#undef readChars
|
|
|
|
lexerState->nbChars += totalCharsRead;
|
|
|
|
/* If there aren't enough chars even after refilling, give up */
|
|
if (lexerState->nbChars <= distance)
|
|
return EOF;
|
|
}
|
|
return (unsigned char)lexerState->buf[(lexerState->index + distance) % LEXER_BUF_SIZE];
|
|
}
|
|
|
|
/* forward declarations for peek */
|
|
static void shiftChars(uint8_t distance);
|
|
static char const *readInterpolation(void);
|
|
|
|
static int peek(uint8_t distance)
|
|
{
|
|
int c;
|
|
|
|
restart:
|
|
c = peekInternal(distance);
|
|
|
|
if (distance >= lexerState->macroArgScanDistance) {
|
|
lexerState->macroArgScanDistance = distance + 1; /* Do not consider again */
|
|
if (c == '\\' && !lexerState->disableMacroArgs) {
|
|
/* If character is a backslash, check for a macro arg */
|
|
lexerState->macroArgScanDistance++;
|
|
c = peekInternal(distance + 1);
|
|
if (isMacroChar(c)) {
|
|
char const *str = readMacroArg(c);
|
|
|
|
/*
|
|
* If the macro arg is an empty string, it cannot be
|
|
* expanded, so skip it and keep peeking.
|
|
*/
|
|
if (!str[0]) {
|
|
shiftChars(2);
|
|
goto restart;
|
|
}
|
|
|
|
beginExpansion(distance, 2, str, strlen(str), c == '#', NULL);
|
|
|
|
/*
|
|
* Assuming macro args can't be recursive (I'll be damned if a way
|
|
* is found...), then we mark the entire macro arg as scanned;
|
|
* however, the two macro arg characters (\1) will be ignored,
|
|
* so they shouldn't be counted in the scan distance!
|
|
*/
|
|
lexerState->macroArgScanDistance += strlen(str) - 2;
|
|
|
|
c = str[0];
|
|
} else {
|
|
c = '\\';
|
|
}
|
|
} else if (c == '{' && !lexerState->disableInterpolation) {
|
|
/* If character is an open brace, do symbol interpolation */
|
|
shiftChars(1);
|
|
char const *ptr = readInterpolation();
|
|
|
|
if (ptr) {
|
|
beginExpansion(distance, 0, ptr, strlen(ptr), false, ptr);
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
static void shiftChars(uint8_t distance)
|
|
{
|
|
if (lexerState->capturing) {
|
|
if (lexerState->captureBuf) {
|
|
if (lexerState->captureSize + distance >= lexerState->captureCapacity)
|
|
reallocCaptureBuf();
|
|
/* TODO: improve this? */
|
|
for (uint8_t i = 0; i < distance; i++)
|
|
lexerState->captureBuf[lexerState->captureSize++] = peek(i);
|
|
} else {
|
|
lexerState->captureSize += distance;
|
|
}
|
|
}
|
|
|
|
lexerState->macroArgScanDistance -= distance;
|
|
|
|
/* FIXME: this may not be too great, as only the top level is considered... */
|
|
|
|
/*
|
|
* The logic is as follows:
|
|
* - Any characters up to the expansion need to be consumed in the file
|
|
* - If some remain after that, advance the offset within the expansion
|
|
* - If that goes *past* the expansion, then leftovers shall be consumed in the file
|
|
* - If we went past the expansion, we're back to square one, and should re-do all
|
|
*/
|
|
nextExpansion:
|
|
if (lexerState->expansions) {
|
|
/* If the read cursor reaches into the expansion, update offset */
|
|
if (distance > lexerState->expansions->distance) {
|
|
/* distance = <file chars (expansion distance)> + <expansion chars> */
|
|
lexerState->expansionOfs += distance - lexerState->expansions->distance;
|
|
distance = lexerState->expansions->distance; /* Nb chars to read in file */
|
|
/* Now, check if the expansion finished being read */
|
|
if (lexerState->expansionOfs >= lexerState->expansions->totalLen) {
|
|
/* Add the leftovers to the distance */
|
|
distance += lexerState->expansionOfs;
|
|
distance -= lexerState->expansions->totalLen;
|
|
/* Also add in the post-expansion skip */
|
|
distance += lexerState->expansions->skip;
|
|
/* Move on to the next expansion */
|
|
struct Expansion *next = lexerState->expansions->next;
|
|
|
|
freeExpansion(lexerState->expansions);
|
|
lexerState->expansions = next;
|
|
/* Reset the offset for the next expansion */
|
|
lexerState->expansionOfs = 0;
|
|
/* And repeat, in case we also go into or over the next expansion */
|
|
goto nextExpansion;
|
|
}
|
|
}
|
|
/* Getting closer to the expansion */
|
|
lexerState->expansions->distance -= distance;
|
|
/* Now, `distance` is how many bytes to move forward **in the file** */
|
|
}
|
|
|
|
lexerState->colNo += distance;
|
|
|
|
if (lexerState->isMmapped) {
|
|
lexerState->offset += distance;
|
|
} else {
|
|
lexerState->index += distance;
|
|
/* Wrap around if necessary */
|
|
if (lexerState->index >= LEXER_BUF_SIZE)
|
|
lexerState->index %= LEXER_BUF_SIZE;
|
|
assert(lexerState->nbChars >= distance);
|
|
lexerState->nbChars -= distance;
|
|
}
|
|
}
|
|
|
|
static int nextChar(void)
|
|
{
|
|
int c = peek(0);
|
|
|
|
/* If not at EOF, advance read position */
|
|
if (c != EOF)
|
|
shiftChars(1);
|
|
return c;
|
|
}
|
|
|
|
static void handleCRLF(int c)
|
|
{
|
|
if (c == '\r' && peek(0) == '\n')
|
|
shiftChars(1);
|
|
}
|
|
|
|
/* "Services" provided by the lexer to the rest of the program */
|
|
|
|
char const *lexer_GetFileName(void)
|
|
{
|
|
return lexerState ? lexerState->path : NULL;
|
|
}
|
|
|
|
uint32_t lexer_GetLineNo(void)
|
|
{
|
|
return lexerState->lineNo;
|
|
}
|
|
|
|
uint32_t lexer_GetColNo(void)
|
|
{
|
|
return lexerState->colNo;
|
|
}
|
|
|
|
void lexer_DumpStringExpansions(void)
|
|
{
|
|
if (!lexerState)
|
|
return;
|
|
struct Expansion **stack = malloc(sizeof(*stack) * (nMaxRecursionDepth + 1));
|
|
struct Expansion *expansion; /* Temp var for `lookupExpansion` */
|
|
unsigned int depth = 0;
|
|
size_t distance = lexerState->expansionOfs;
|
|
|
|
if (!stack)
|
|
fatalerror("Failed to alloc string expansion stack: %s\n", strerror(errno));
|
|
|
|
#define LOOKUP_PRE_NEST(exp) do { \
|
|
/* Only register EQUS expansions, not string args */ \
|
|
if ((exp)->name) \
|
|
stack[depth++] = (exp); \
|
|
} while (0)
|
|
#define LOOKUP_POST_NEST(exp)
|
|
lookupExpansion(expansion, distance);
|
|
(void)expansion;
|
|
#undef LOOKUP_PRE_NEST
|
|
#undef LOOKUP_POST_NEST
|
|
|
|
while (depth--)
|
|
fprintf(stderr, "while expanding symbol \"%s\"\n", stack[depth]->name);
|
|
free(stack);
|
|
}
|
|
|
|
/* Discards an block comment */
|
|
static void discardBlockComment(void)
|
|
{
|
|
dbgPrint("Discarding block comment\n");
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
for (;;) {
|
|
int c = nextChar();
|
|
|
|
switch (c) {
|
|
case EOF:
|
|
error("Unterminated block comment\n");
|
|
goto finish;
|
|
case '\r':
|
|
/* Handle CRLF before nextLine() since shiftChars updates colNo */
|
|
handleCRLF(c);
|
|
/* fallthrough */
|
|
case '\n':
|
|
if (!lexerState->expansions || lexerState->expansions->distance)
|
|
nextLine();
|
|
continue;
|
|
case '/':
|
|
if (peek(0) == '*') {
|
|
warning(WARNING_NESTED_COMMENT,
|
|
"/* in block comment\n");
|
|
}
|
|
continue;
|
|
case '*':
|
|
if (peek(0) == '/') {
|
|
shiftChars(1);
|
|
goto finish;
|
|
}
|
|
/* fallthrough */
|
|
default:
|
|
continue;
|
|
}
|
|
}
|
|
finish:
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
}
|
|
|
|
/* Function to discard all of a line's comments */
|
|
|
|
static void discardComment(void)
|
|
{
|
|
dbgPrint("Discarding comment\n");
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
for (;;) {
|
|
int c = peek(0);
|
|
|
|
if (c == EOF || c == '\r' || c == '\n')
|
|
break;
|
|
shiftChars(1);
|
|
}
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
}
|
|
|
|
/* Function to read a line continuation */
|
|
|
|
static void readLineContinuation(void)
|
|
{
|
|
dbgPrint("Beginning line continuation\n");
|
|
for (;;) {
|
|
int c = peek(0);
|
|
|
|
if (isWhitespace(c)) {
|
|
shiftChars(1);
|
|
} else if (c == '\r' || c == '\n') {
|
|
shiftChars(1);
|
|
/* Handle CRLF before nextLine() since shiftChars updates colNo */
|
|
handleCRLF(c);
|
|
if (!lexerState->expansions || lexerState->expansions->distance)
|
|
nextLine();
|
|
return;
|
|
} else if (c == ';') {
|
|
discardComment();
|
|
} else {
|
|
error("Begun line continuation, but encountered character '%s'\n",
|
|
print(c));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Function to read an anonymous label ref */
|
|
|
|
static void readAnonLabelRef(char c)
|
|
{
|
|
uint32_t n = 0;
|
|
|
|
// We come here having already peeked at one char, so no need to do it again
|
|
do {
|
|
shiftChars(1);
|
|
n++;
|
|
} while (peek(0) == c);
|
|
|
|
sym_WriteAnonLabelName(yylval.tzSym, n, c == '-');
|
|
}
|
|
|
|
/* Functions to lex numbers of various radixes */
|
|
|
|
static void readNumber(int radix, int32_t baseValue)
|
|
{
|
|
uint32_t value = baseValue;
|
|
|
|
for (;; shiftChars(1)) {
|
|
int c = peek(0);
|
|
|
|
if (c == '_')
|
|
continue;
|
|
else if (c < '0' || c > '0' + radix - 1)
|
|
break;
|
|
if (value > (UINT32_MAX - (c - '0')) / radix)
|
|
warning(WARNING_LARGE_CONSTANT, "Integer constant is too large\n");
|
|
value = value * radix + (c - '0');
|
|
}
|
|
|
|
yylval.nConstValue = value;
|
|
}
|
|
|
|
static void readFractionalPart(void)
|
|
{
|
|
uint32_t value = 0, divisor = 1;
|
|
|
|
dbgPrint("Reading fractional part\n");
|
|
for (;; shiftChars(1)) {
|
|
int c = peek(0);
|
|
|
|
if (c == '_')
|
|
continue;
|
|
else if (c < '0' || c > '9')
|
|
break;
|
|
if (divisor > (UINT32_MAX - (c - '0')) / 10) {
|
|
warning(WARNING_LARGE_CONSTANT,
|
|
"Precision of fixed-point constant is too large\n");
|
|
/* Discard any additional digits */
|
|
shiftChars(1);
|
|
while (c = peek(0), (c >= '0' && c <= '9') || c == '_')
|
|
shiftChars(1);
|
|
break;
|
|
}
|
|
value = value * 10 + (c - '0');
|
|
divisor *= 10;
|
|
}
|
|
|
|
if (yylval.nConstValue > INT16_MAX || yylval.nConstValue < INT16_MIN)
|
|
warning(WARNING_LARGE_CONSTANT, "Magnitude of fixed-point constant is too large\n");
|
|
|
|
/* Cast to unsigned avoids UB if shifting discards bits */
|
|
yylval.nConstValue = (uint32_t)yylval.nConstValue << 16;
|
|
/* Cast to unsigned avoids undefined overflow behavior */
|
|
uint16_t fractional = (uint16_t)round(value * 65536.0 / divisor);
|
|
|
|
yylval.nConstValue |= fractional * (yylval.nConstValue >= 0 ? 1 : -1);
|
|
}
|
|
|
|
char binDigits[2];
|
|
|
|
static void readBinaryNumber(void)
|
|
{
|
|
uint32_t value = 0;
|
|
|
|
dbgPrint("Reading binary number with digits [%c,%c]\n", binDigits[0], binDigits[1]);
|
|
for (;; shiftChars(1)) {
|
|
int c = peek(0);
|
|
int bit;
|
|
|
|
if (c == binDigits[0])
|
|
bit = 0;
|
|
else if (c == binDigits[1])
|
|
bit = 1;
|
|
else if (c == '_')
|
|
continue;
|
|
else
|
|
break;
|
|
if (value > (UINT32_MAX - bit) / 2)
|
|
warning(WARNING_LARGE_CONSTANT, "Integer constant is too large\n");
|
|
value = value * 2 + bit;
|
|
}
|
|
|
|
yylval.nConstValue = value;
|
|
}
|
|
|
|
static void readHexNumber(void)
|
|
{
|
|
uint32_t value = 0;
|
|
bool empty = true;
|
|
|
|
dbgPrint("Reading hex number\n");
|
|
for (;; shiftChars(1)) {
|
|
int c = peek(0);
|
|
|
|
if (c >= 'a' && c <= 'f') /* Convert letters to right after digits */
|
|
c = c - 'a' + 10;
|
|
else if (c >= 'A' && c <= 'F')
|
|
c = c - 'A' + 10;
|
|
else if (c >= '0' && c <= '9')
|
|
c = c - '0';
|
|
else if (c == '_' && !empty)
|
|
continue;
|
|
else
|
|
break;
|
|
|
|
if (value > (UINT32_MAX - c) / 16)
|
|
warning(WARNING_LARGE_CONSTANT, "Integer constant is too large\n");
|
|
value = value * 16 + c;
|
|
|
|
empty = false;
|
|
}
|
|
|
|
if (empty)
|
|
error("Invalid integer constant, no digits after '$'\n");
|
|
|
|
yylval.nConstValue = value;
|
|
}
|
|
|
|
char gfxDigits[4];
|
|
|
|
static void readGfxConstant(void)
|
|
{
|
|
uint32_t bp0 = 0, bp1 = 0;
|
|
uint8_t width = 0;
|
|
|
|
dbgPrint("Reading gfx constant with digits [%c,%c,%c,%c]\n",
|
|
gfxDigits[0], gfxDigits[1], gfxDigits[2], gfxDigits[3]);
|
|
for (;;) {
|
|
int c = peek(0);
|
|
uint32_t pixel;
|
|
|
|
if (c == gfxDigits[0])
|
|
pixel = 0;
|
|
else if (c == gfxDigits[1])
|
|
pixel = 1;
|
|
else if (c == gfxDigits[2])
|
|
pixel = 2;
|
|
else if (c == gfxDigits[3])
|
|
pixel = 3;
|
|
else
|
|
break;
|
|
|
|
if (width < 8) {
|
|
bp0 = bp0 << 1 | (pixel & 1);
|
|
bp1 = bp1 << 1 | (pixel >> 1);
|
|
}
|
|
if (width < 9)
|
|
width++;
|
|
shiftChars(1);
|
|
}
|
|
|
|
if (width == 0)
|
|
error("Invalid graphics constant, no digits after '`'\n");
|
|
else if (width == 9)
|
|
warning(WARNING_LARGE_CONSTANT,
|
|
"Graphics constant is too long, only 8 first pixels considered\n");
|
|
|
|
yylval.nConstValue = bp1 << 8 | bp0;
|
|
}
|
|
|
|
/* Functions to read identifiers & keywords */
|
|
|
|
static bool startsIdentifier(int c)
|
|
{
|
|
return (c <= 'Z' && c >= 'A') || (c <= 'z' && c >= 'a') || c == '.' || c == '_';
|
|
}
|
|
|
|
static int readIdentifier(char firstChar)
|
|
{
|
|
dbgPrint("Reading identifier or keyword\n");
|
|
/* Lex while checking for a keyword */
|
|
yylval.tzSym[0] = firstChar;
|
|
uint16_t nodeID = keywordDict[0].children[dictIndex(firstChar)];
|
|
int tokenType = firstChar == '.' ? T_LOCAL_ID : T_ID;
|
|
size_t i;
|
|
|
|
for (i = 1; ; i++) {
|
|
int c = peek(0);
|
|
|
|
/* If that char isn't in the symbol charset, end */
|
|
if ((c > '9' || c < '0')
|
|
&& (c > 'Z' || c < 'A')
|
|
&& (c > 'z' || c < 'a')
|
|
&& c != '#' && c != '.' && c != '@' && c != '_')
|
|
break;
|
|
shiftChars(1);
|
|
|
|
/* Write the char to the identifier's name */
|
|
if (i < sizeof(yylval.tzSym) - 1)
|
|
yylval.tzSym[i] = c;
|
|
|
|
/* If the char was a dot, mark the identifier as local */
|
|
if (c == '.')
|
|
tokenType = T_LOCAL_ID;
|
|
|
|
/* Attempt to traverse the tree to check for a keyword */
|
|
if (nodeID) /* Do nothing if matching already failed */
|
|
nodeID = keywordDict[nodeID].children[dictIndex(c)];
|
|
}
|
|
|
|
if (i > sizeof(yylval.tzSym) - 1) {
|
|
warning(WARNING_LONG_STR, "Symbol name too long, got truncated\n");
|
|
i = sizeof(yylval.tzSym) - 1;
|
|
}
|
|
yylval.tzSym[i] = '\0'; /* Terminate the string */
|
|
dbgPrint("Ident/keyword = \"%s\"\n", yylval.tzSym);
|
|
|
|
if (keywordDict[nodeID].keyword)
|
|
return keywordDict[nodeID].keyword->token;
|
|
|
|
return tokenType;
|
|
}
|
|
|
|
/* Functions to read strings */
|
|
|
|
static char const *readInterpolation(void)
|
|
{
|
|
char symName[MAXSYMLEN + 1];
|
|
size_t i = 0;
|
|
struct FormatSpec fmt = fmt_NewSpec();
|
|
|
|
for (;;) {
|
|
int c = peek(0);
|
|
|
|
if (c == '{') { /* Nested interpolation */
|
|
shiftChars(1);
|
|
char const *ptr = readInterpolation();
|
|
|
|
if (ptr) {
|
|
beginExpansion(0, 0, ptr, strlen(ptr), false, ptr);
|
|
continue; /* Restart, reading from the new buffer */
|
|
}
|
|
} else if (c == EOF || c == '\r' || c == '\n' || c == '"') {
|
|
error("Missing }\n");
|
|
break;
|
|
} else if (c == '}') {
|
|
shiftChars(1);
|
|
break;
|
|
} else if (c == ':' && !fmt_IsFinished(&fmt)) { /* Format spec, only once */
|
|
shiftChars(1);
|
|
for (size_t j = 0; j < i; j++)
|
|
fmt_UseCharacter(&fmt, symName[j]);
|
|
fmt_FinishCharacters(&fmt);
|
|
symName[i] = '\0';
|
|
if (!fmt_IsValid(&fmt))
|
|
error("Invalid format spec '%s'\n", symName);
|
|
i = 0; /* Now that format has been set, restart at beginning of string */
|
|
} else {
|
|
shiftChars(1);
|
|
if (i < sizeof(symName)) /* Allow writing an extra char to flag overflow */
|
|
symName[i++] = c;
|
|
}
|
|
}
|
|
|
|
if (i == sizeof(symName)) {
|
|
warning(WARNING_LONG_STR, "Symbol name too long\n");
|
|
i--;
|
|
}
|
|
symName[i] = '\0';
|
|
|
|
static char buf[MAXSTRLEN + 1];
|
|
|
|
struct Symbol const *sym = sym_FindScopedSymbol(symName);
|
|
|
|
if (!sym) {
|
|
error("Interpolated symbol \"%s\" does not exist\n", symName);
|
|
} else if (sym->type == SYM_EQUS) {
|
|
if (fmt_IsEmpty(&fmt))
|
|
/* No format was specified */
|
|
fmt.type = 's';
|
|
fmt_PrintString(buf, sizeof(buf), &fmt, sym_GetStringValue(sym));
|
|
return buf;
|
|
} else if (sym_IsNumeric(sym)) {
|
|
if (fmt_IsEmpty(&fmt)) {
|
|
/* No format was specified; default to uppercase $hex */
|
|
fmt.type = 'X';
|
|
fmt.prefix = true;
|
|
}
|
|
fmt_PrintNumber(buf, sizeof(buf), &fmt, sym_GetConstantSymValue(sym));
|
|
return buf;
|
|
} else {
|
|
error("Only numerical and string symbols can be interpolated\n");
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#define append_yylval_tzString(c) do { \
|
|
char v = (c); /* Evaluate c exactly once in case it has side effects. */ \
|
|
if (i < sizeof(yylval.tzString)) \
|
|
yylval.tzString[i++] = v; \
|
|
} while (0)
|
|
|
|
static size_t appendEscapedSubstring(char const *str, size_t i)
|
|
{
|
|
/* Copy one extra to flag overflow */
|
|
while (*str) {
|
|
char c = *str++;
|
|
|
|
/* Escape characters that need escaping */
|
|
switch (c) {
|
|
case '\\':
|
|
case '"':
|
|
case '{':
|
|
append_yylval_tzString('\\');
|
|
break;
|
|
case '\n':
|
|
append_yylval_tzString('\\');
|
|
c = 'n';
|
|
break;
|
|
case '\r':
|
|
append_yylval_tzString('\\');
|
|
c = 'r';
|
|
break;
|
|
case '\t':
|
|
append_yylval_tzString('\\');
|
|
c = 't';
|
|
break;
|
|
}
|
|
|
|
append_yylval_tzString(c);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static void readString(void)
|
|
{
|
|
dbgPrint("Reading string\n");
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
|
|
size_t i = 0;
|
|
bool multiline = false;
|
|
|
|
// We reach this function after reading a single quote, but we also support triple quotes
|
|
if (peek(0) == '"') {
|
|
shiftChars(1);
|
|
if (peek(0) == '"') {
|
|
// """ begins a multi-line string
|
|
shiftChars(1);
|
|
multiline = true;
|
|
} else {
|
|
// "" is an empty string, skip the loop
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
int c = peek(0);
|
|
|
|
// '\r', '\n' or EOF ends a single-line string early
|
|
if (c == EOF || (!multiline && (c == '\r' || c == '\n'))) {
|
|
error("Unterminated string\n");
|
|
break;
|
|
}
|
|
|
|
// We'll be staying in the string, so we can safely consume the char
|
|
shiftChars(1);
|
|
|
|
// Handle '\r' or '\n' (in multiline strings only, already handled above otherwise)
|
|
if (c == '\r' || c == '\n') {
|
|
/* Handle CRLF before nextLine() since shiftChars updates colNo */
|
|
handleCRLF(c);
|
|
nextLine();
|
|
c = '\n';
|
|
}
|
|
|
|
switch (c) {
|
|
case '"':
|
|
if (multiline) {
|
|
// Only """ ends a multi-line string
|
|
if (peek(0) != '"')
|
|
break;
|
|
shiftChars(1);
|
|
if (peek(0) != '"') {
|
|
append_yylval_tzString('"');
|
|
break;
|
|
}
|
|
shiftChars(1);
|
|
}
|
|
goto finish;
|
|
|
|
case '\\': // Character escape or macro arg
|
|
c = peek(0);
|
|
switch (c) {
|
|
case '\\':
|
|
case '"':
|
|
case '{':
|
|
case '}':
|
|
// Return that character unchanged
|
|
shiftChars(1);
|
|
break;
|
|
case 'n':
|
|
c = '\n';
|
|
shiftChars(1);
|
|
break;
|
|
case 'r':
|
|
c = '\r';
|
|
shiftChars(1);
|
|
break;
|
|
case 't':
|
|
c = '\t';
|
|
shiftChars(1);
|
|
break;
|
|
|
|
// Line continuation
|
|
case ' ':
|
|
case '\r':
|
|
case '\n':
|
|
readLineContinuation();
|
|
continue;
|
|
|
|
// Macro arg
|
|
case '@':
|
|
case '#':
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
shiftChars(1);
|
|
char const *str = readMacroArg(c);
|
|
|
|
while (*str)
|
|
append_yylval_tzString(*str++);
|
|
continue; // Do not copy an additional character
|
|
|
|
case EOF: // Can't really print that one
|
|
error("Illegal character escape at end of input\n");
|
|
c = '\\';
|
|
break;
|
|
|
|
default:
|
|
error("Illegal character escape '%s'\n", print(c));
|
|
shiftChars(1);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case '{': // Symbol interpolation
|
|
// We'll be exiting the string scope, so re-enable expansions
|
|
// (Not interpolations, since they're handled by the function itself...)
|
|
lexerState->disableMacroArgs = false;
|
|
char const *ptr = readInterpolation();
|
|
|
|
if (ptr)
|
|
while (*ptr)
|
|
append_yylval_tzString(*ptr++);
|
|
lexerState->disableMacroArgs = true;
|
|
continue; // Do not copy an additional character
|
|
|
|
// Regular characters will just get copied
|
|
}
|
|
|
|
append_yylval_tzString(c);
|
|
}
|
|
|
|
finish:
|
|
if (i == sizeof(yylval.tzString)) {
|
|
i--;
|
|
warning(WARNING_LONG_STR, "String constant too long\n");
|
|
}
|
|
yylval.tzString[i] = '\0';
|
|
|
|
dbgPrint("Read string \"%s\"\n", yylval.tzString);
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
}
|
|
|
|
static size_t appendStringLiteral(size_t i)
|
|
{
|
|
dbgPrint("Reading string\n");
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
|
|
bool multiline = false;
|
|
|
|
// We reach this function after reading a single quote, but we also support triple quotes
|
|
append_yylval_tzString('"');
|
|
if (peek(0) == '"') {
|
|
append_yylval_tzString('"');
|
|
shiftChars(1);
|
|
if (peek(0) == '"') {
|
|
// """ begins a multi-line string
|
|
append_yylval_tzString('"');
|
|
shiftChars(1);
|
|
multiline = true;
|
|
} else {
|
|
// "" is an empty string, skip the loop
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
int c = peek(0);
|
|
|
|
// '\r', '\n' or EOF ends a single-line string early
|
|
if (c == EOF || (!multiline && (c == '\r' || c == '\n'))) {
|
|
error("Unterminated string\n");
|
|
break;
|
|
}
|
|
|
|
// We'll be staying in the string, so we can safely consume the char
|
|
shiftChars(1);
|
|
|
|
// Handle '\r' or '\n' (in multiline strings only, already handled above otherwise)
|
|
if (c == '\r' || c == '\n') {
|
|
/* Handle CRLF before nextLine() since shiftChars updates colNo */
|
|
handleCRLF(c);
|
|
nextLine();
|
|
c = '\n';
|
|
}
|
|
|
|
switch (c) {
|
|
case '"':
|
|
if (multiline) {
|
|
// Only """ ends a multi-line string
|
|
if (peek(0) != '"')
|
|
break;
|
|
append_yylval_tzString('"');
|
|
shiftChars(1);
|
|
if (peek(0) != '"')
|
|
break;
|
|
append_yylval_tzString('"');
|
|
shiftChars(1);
|
|
}
|
|
append_yylval_tzString('"');
|
|
goto finish;
|
|
|
|
case '\\': // Character escape or macro arg
|
|
c = peek(0);
|
|
switch (c) {
|
|
// Character escape
|
|
case '\\':
|
|
case '"':
|
|
case '{':
|
|
case '}':
|
|
case 'n':
|
|
case 'r':
|
|
case 't':
|
|
// Return that character unchanged
|
|
append_yylval_tzString('\\');
|
|
shiftChars(1);
|
|
break;
|
|
|
|
// Line continuation
|
|
case ' ':
|
|
case '\r':
|
|
case '\n':
|
|
readLineContinuation();
|
|
continue;
|
|
|
|
// Macro arg
|
|
case '@':
|
|
case '#':
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
shiftChars(1);
|
|
char const *str = readMacroArg(c);
|
|
|
|
i = appendEscapedSubstring(str, i);
|
|
continue; // Do not copy an additional character
|
|
|
|
case EOF: // Can't really print that one
|
|
error("Illegal character escape at end of input\n");
|
|
c = '\\';
|
|
break;
|
|
|
|
case ',': /* `\,` inside a macro arg string literal */
|
|
warning(WARNING_OBSOLETE,
|
|
"`\\,` is deprecated inside strings\n");
|
|
shiftChars(1);
|
|
break;
|
|
|
|
default:
|
|
error("Illegal character escape '%s'\n", print(c));
|
|
shiftChars(1);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case '{': // Symbol interpolation
|
|
// We'll be exiting the string scope, so re-enable expansions
|
|
// (Not interpolations, since they're handled by the function itself...)
|
|
lexerState->disableMacroArgs = false;
|
|
char const *ptr = readInterpolation();
|
|
|
|
if (ptr)
|
|
i = appendEscapedSubstring(ptr, i);
|
|
lexerState->disableMacroArgs = true;
|
|
continue; // Do not copy an additional character
|
|
|
|
// Regular characters will just get copied
|
|
}
|
|
|
|
append_yylval_tzString(c);
|
|
}
|
|
|
|
finish:
|
|
if (i == sizeof(yylval.tzString)) {
|
|
i--;
|
|
warning(WARNING_LONG_STR, "String constant too long\n");
|
|
}
|
|
yylval.tzString[i] = '\0';
|
|
|
|
dbgPrint("Read string \"%s\"\n", yylval.tzString);
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
|
|
return i;
|
|
}
|
|
|
|
/* Function to report one character's worth of garbage bytes */
|
|
|
|
static char const *reportGarbageChar(unsigned char firstByte)
|
|
{
|
|
static char bytes[6 + 2 + 1]; /* Max size of a UTF-8 encoded code point, plus "''\0" */
|
|
/* First, attempt UTF-8 decoding */
|
|
uint32_t state = 0; /* UTF8_ACCEPT */
|
|
uint32_t codepoint;
|
|
uint8_t size = 0; /* Number of additional bytes to shift */
|
|
|
|
bytes[1] = firstByte; /* No need to init the rest of the array */
|
|
decode(&state, &codepoint, firstByte);
|
|
while (state != 0 && state != 1 /* UTF8_REJECT */) {
|
|
int c = peek(size++);
|
|
|
|
if (c == EOF)
|
|
break;
|
|
bytes[size + 1] = c;
|
|
decode(&state, &codepoint, c);
|
|
}
|
|
|
|
if (state == 0 && (codepoint > UCHAR_MAX || isprint((unsigned char)codepoint))) {
|
|
/* Character is valid, printable UTF-8! */
|
|
shiftChars(size);
|
|
bytes[0] = '\'';
|
|
bytes[size + 2] = '\'';
|
|
bytes[size + 3] = '\0';
|
|
return bytes;
|
|
}
|
|
|
|
/* The character isn't valid UTF-8, so we'll only print that first byte */
|
|
if (isprint(firstByte)) {
|
|
/* bytes[1] = firstByte; */
|
|
bytes[0] = '\'';
|
|
bytes[2] = '\'';
|
|
bytes[3] = '\0';
|
|
return bytes;
|
|
}
|
|
/* Well then, print its hex value */
|
|
static char const hexChars[16] = "0123456789ABCDEF";
|
|
|
|
bytes[0] = '0';
|
|
bytes[1] = 'x';
|
|
bytes[2] = hexChars[firstByte >> 4];
|
|
bytes[3] = hexChars[firstByte & 0x0f];
|
|
bytes[4] = '\0';
|
|
return bytes;
|
|
}
|
|
|
|
/* Lexer core */
|
|
|
|
static int yylex_NORMAL(void)
|
|
{
|
|
dbgPrint("Lexing in normal mode, line=%" PRIu32 ", col=%" PRIu32 "\n",
|
|
lexer_GetLineNo(), lexer_GetColNo());
|
|
for (;;) {
|
|
int c = nextChar();
|
|
char secondChar;
|
|
|
|
switch (c) {
|
|
/* Ignore whitespace and comments */
|
|
|
|
case ';':
|
|
discardComment();
|
|
/* fallthrough */
|
|
case ' ':
|
|
case '\t':
|
|
break;
|
|
|
|
/* Handle unambiguous single-char tokens */
|
|
|
|
case '^':
|
|
return T_OP_XOR;
|
|
case '+':
|
|
return T_OP_ADD;
|
|
case '-':
|
|
return T_OP_SUB;
|
|
case '~':
|
|
return T_OP_NOT;
|
|
|
|
case '@':
|
|
yylval.tzSym[0] = '@';
|
|
yylval.tzSym[1] = '\0';
|
|
return T_ID;
|
|
|
|
case '[':
|
|
return T_LBRACK;
|
|
case ']':
|
|
return T_RBRACK;
|
|
case '(':
|
|
return T_LPAREN;
|
|
case ')':
|
|
return T_RPAREN;
|
|
case ',':
|
|
return T_COMMA;
|
|
|
|
/* Handle ambiguous 1- or 2-char tokens */
|
|
|
|
case '*': /* Either MUL or EXP */
|
|
if (peek(0) == '*') {
|
|
shiftChars(1);
|
|
return T_OP_EXP;
|
|
}
|
|
return T_OP_MUL;
|
|
|
|
case '/': /* Either division or a block comment */
|
|
if (peek(0) == '*') {
|
|
shiftChars(1);
|
|
discardBlockComment();
|
|
break;
|
|
}
|
|
return T_OP_DIV;
|
|
|
|
case '|': /* Either binary or logical OR */
|
|
if (peek(0) == '|') {
|
|
shiftChars(1);
|
|
return T_OP_LOGICOR;
|
|
}
|
|
return T_OP_OR;
|
|
|
|
case '=': /* Either SET alias, or EQ */
|
|
if (peek(0) == '=') {
|
|
shiftChars(1);
|
|
return T_OP_LOGICEQU;
|
|
}
|
|
return T_POP_EQUAL;
|
|
|
|
case '<': /* Either a LT, LTE, or left shift */
|
|
switch (peek(0)) {
|
|
case '=':
|
|
shiftChars(1);
|
|
return T_OP_LOGICLE;
|
|
case '<':
|
|
shiftChars(1);
|
|
return T_OP_SHL;
|
|
default:
|
|
return T_OP_LOGICLT;
|
|
}
|
|
|
|
case '>': /* Either a GT, GTE, or right shift */
|
|
switch (peek(0)) {
|
|
case '=':
|
|
shiftChars(1);
|
|
return T_OP_LOGICGE;
|
|
case '>':
|
|
shiftChars(1);
|
|
return T_OP_SHR;
|
|
default:
|
|
return T_OP_LOGICGT;
|
|
}
|
|
|
|
case '!': /* Either a NEQ, or negation */
|
|
if (peek(0) == '=') {
|
|
shiftChars(1);
|
|
return T_OP_LOGICNE;
|
|
}
|
|
return T_OP_LOGICNOT;
|
|
|
|
/* Handle colon, which may begin an anonymous label ref */
|
|
|
|
case ':':
|
|
c = peek(0);
|
|
if (c != '+' && c != '-')
|
|
return T_COLON;
|
|
|
|
readAnonLabelRef(c);
|
|
return T_ANON;
|
|
|
|
/* Handle numbers */
|
|
|
|
case '$':
|
|
yylval.nConstValue = 0;
|
|
readHexNumber();
|
|
/* Attempt to match `$ff00+c` */
|
|
if (yylval.nConstValue == 0xff00) {
|
|
/* Whitespace is ignored anyways */
|
|
while (isWhitespace(c = peek(0)))
|
|
shiftChars(1);
|
|
if (c == '+') {
|
|
/* FIXME: not great due to large lookahead */
|
|
uint8_t distance = 1;
|
|
|
|
do {
|
|
c = peek(distance++);
|
|
} while (isWhitespace(c));
|
|
|
|
if (c == 'c' || c == 'C') {
|
|
shiftChars(distance);
|
|
return T_MODE_HW_C;
|
|
}
|
|
}
|
|
}
|
|
return T_NUMBER;
|
|
|
|
case '0': /* Decimal number */
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
readNumber(10, c - '0');
|
|
if (peek(0) == '.') {
|
|
shiftChars(1);
|
|
readFractionalPart();
|
|
}
|
|
return T_NUMBER;
|
|
|
|
case '&':
|
|
secondChar = peek(0);
|
|
if (secondChar == '&') {
|
|
shiftChars(1);
|
|
return T_OP_LOGICAND;
|
|
} else if (secondChar >= '0' && secondChar <= '7') {
|
|
readNumber(8, 0);
|
|
return T_NUMBER;
|
|
}
|
|
return T_OP_AND;
|
|
|
|
case '%': /* Either a modulo, or a binary constant */
|
|
secondChar = peek(0);
|
|
if (secondChar != binDigits[0] && secondChar != binDigits[1])
|
|
return T_OP_MOD;
|
|
|
|
yylval.nConstValue = 0;
|
|
readBinaryNumber();
|
|
return T_NUMBER;
|
|
|
|
case '`': /* Gfx constant */
|
|
readGfxConstant();
|
|
return T_NUMBER;
|
|
|
|
/* Handle strings */
|
|
|
|
case '"':
|
|
readString();
|
|
return T_STRING;
|
|
|
|
/* Handle newlines and EOF */
|
|
|
|
case '\r':
|
|
handleCRLF(c);
|
|
/* fallthrough */
|
|
case '\n':
|
|
return T_NEWLINE;
|
|
|
|
case EOF:
|
|
return T_EOF;
|
|
|
|
/* Handle escapes */
|
|
|
|
case '\\':
|
|
c = peek(0);
|
|
|
|
switch (c) {
|
|
case ' ':
|
|
case '\r':
|
|
case '\n':
|
|
readLineContinuation();
|
|
break;
|
|
|
|
case EOF:
|
|
error("Illegal character escape at end of input\n");
|
|
break;
|
|
|
|
default:
|
|
shiftChars(1);
|
|
error("Illegal character escape '%s'\n", print(c));
|
|
}
|
|
break;
|
|
|
|
/* Handle identifiers and escapes... or error out */
|
|
|
|
default:
|
|
if (startsIdentifier(c)) {
|
|
int tokenType = readIdentifier(c);
|
|
|
|
/* If a keyword, don't try to expand */
|
|
if (tokenType != T_ID && tokenType != T_LOCAL_ID)
|
|
return tokenType;
|
|
|
|
/* Local symbols cannot be string expansions */
|
|
if (tokenType == T_ID && lexerState->expandStrings) {
|
|
/* Attempt string expansion */
|
|
struct Symbol const *sym = sym_FindExactSymbol(yylval.tzSym);
|
|
|
|
if (sym && sym->type == SYM_EQUS) {
|
|
char const *s = sym_GetStringValue(sym);
|
|
|
|
beginExpansion(0, 0, s, strlen(s), false,
|
|
sym->name);
|
|
continue; /* Restart, reading from the new buffer */
|
|
}
|
|
}
|
|
|
|
if (tokenType == T_ID && (lexerState->atLineStart || peek(0) == ':'))
|
|
return T_LABEL;
|
|
|
|
return tokenType;
|
|
}
|
|
|
|
/* Do not report weird characters when capturing, it'll be done later */
|
|
if (!lexerState->capturing) {
|
|
/* TODO: try to group reportings */
|
|
error("Unknown character %s\n", reportGarbageChar(c));
|
|
}
|
|
}
|
|
lexerState->atLineStart = false;
|
|
}
|
|
}
|
|
|
|
static int yylex_RAW(void)
|
|
{
|
|
dbgPrint("Lexing in raw mode, line=%" PRIu32 ", col=%" PRIu32 "\n",
|
|
lexer_GetLineNo(), lexer_GetColNo());
|
|
|
|
/* This is essentially a modified `appendStringLiteral` */
|
|
size_t i = 0;
|
|
int c;
|
|
|
|
/* Trim left whitespace (stops at a block comment or line continuation) */
|
|
while (isWhitespace(peek(0)))
|
|
shiftChars(1);
|
|
|
|
for (;;) {
|
|
c = peek(0);
|
|
|
|
switch (c) {
|
|
case '"': /* String literals inside macro args */
|
|
shiftChars(1);
|
|
i = appendStringLiteral(i);
|
|
break;
|
|
|
|
case ';': /* Comments inside macro args */
|
|
discardComment();
|
|
c = peek(0);
|
|
/* fallthrough */
|
|
case ',': /* End of macro arg */
|
|
case '\r':
|
|
case '\n':
|
|
case EOF:
|
|
goto finish;
|
|
|
|
case '/': /* Block comments inside macro args */
|
|
shiftChars(1); /* Shift the slash */
|
|
if (peek(0) == '*') {
|
|
shiftChars(1);
|
|
discardBlockComment();
|
|
continue;
|
|
}
|
|
append_yylval_tzString(c); /* Append the slash */
|
|
break;
|
|
|
|
case '\\': /* Character escape */
|
|
shiftChars(1); /* Shift the backslash */
|
|
c = peek(0);
|
|
|
|
switch (c) {
|
|
case ',': /* Escape `\,` only inside a macro arg */
|
|
case '\\': /* Escapes shared with string literals */
|
|
case '"':
|
|
case '{':
|
|
case '}':
|
|
break;
|
|
|
|
case 'n':
|
|
c = '\n';
|
|
break;
|
|
case 'r':
|
|
c = '\r';
|
|
break;
|
|
case 't':
|
|
c = '\t';
|
|
break;
|
|
|
|
case ' ':
|
|
case '\r':
|
|
case '\n':
|
|
readLineContinuation();
|
|
continue;
|
|
|
|
case EOF: /* Can't really print that one */
|
|
error("Illegal character escape at end of input\n");
|
|
c = '\\';
|
|
break;
|
|
|
|
/*
|
|
* Macro args were already handled by peek, so '\@',
|
|
* '\#', and '\0'-'\9' should not occur here.
|
|
*/
|
|
|
|
default:
|
|
error("Illegal character escape '%s'\n", print(c));
|
|
break;
|
|
}
|
|
/* fallthrough */
|
|
|
|
default: /* Regular characters will just get copied */
|
|
append_yylval_tzString(c);
|
|
shiftChars(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
finish:
|
|
if (i == sizeof(yylval.tzString)) {
|
|
i--;
|
|
warning(WARNING_LONG_STR, "Macro argument too long\n");
|
|
}
|
|
/* Trim right whitespace */
|
|
while (i && isWhitespace(yylval.tzString[i - 1]))
|
|
i--;
|
|
yylval.tzString[i] = '\0';
|
|
|
|
dbgPrint("Read raw string \"%s\"\n", yylval.tzString);
|
|
|
|
// Returning T_COMMAs to the parser would mean that two consecutive commas
|
|
// (i.e. an empty argument) need to return two different tokens (T_STRING
|
|
// then T_COMMA) without advancing the read. To avoid this, commas in raw
|
|
// mode end the current macro argument but are not tokenized themselves.
|
|
if (c == ',') {
|
|
shiftChars(1);
|
|
return T_STRING;
|
|
}
|
|
|
|
// The last argument may end in a trailing comma, newline, or EOF.
|
|
// To allow trailing commas, raw mode will continue after the last
|
|
// argument, immediately lexing the newline or EOF again (i.e. with
|
|
// an empty raw string before it). This will not be treated as a
|
|
// macro argument. To pass an empty last argument, use a second
|
|
// trailing comma.
|
|
if (i > 0)
|
|
return T_STRING;
|
|
lexer_SetMode(LEXER_NORMAL);
|
|
|
|
if (c == '\r' || c == '\n') {
|
|
shiftChars(1);
|
|
handleCRLF(c);
|
|
return T_NEWLINE;
|
|
}
|
|
|
|
return T_EOF;
|
|
}
|
|
|
|
#undef append_yylval_tzString
|
|
|
|
/*
|
|
* This function uses the fact that `if`, etc. constructs are only valid when
|
|
* there's nothing before them on their lines. This enables filtering
|
|
* "meaningful" (= at line start) vs. "meaningless" (everything else) tokens.
|
|
* It's especially important due to macro args not being handled in this
|
|
* state, and lexing them in "normal" mode potentially producing such tokens.
|
|
*/
|
|
static int skipIfBlock(bool toEndc)
|
|
{
|
|
dbgPrint("Skipping IF block (toEndc = %s)\n", toEndc ? "true" : "false");
|
|
lexer_SetMode(LEXER_NORMAL);
|
|
int startingDepth = lexer_GetIFDepth();
|
|
int token;
|
|
bool atLineStart = lexerState->atLineStart;
|
|
|
|
/* Prevent expanding macro args and symbol interpolation in this state */
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
|
|
for (;;) {
|
|
if (atLineStart) {
|
|
int c;
|
|
|
|
for (;;) {
|
|
c = peek(0);
|
|
if (!isWhitespace(c))
|
|
break;
|
|
shiftChars(1);
|
|
}
|
|
|
|
if (startsIdentifier(c)) {
|
|
shiftChars(1);
|
|
token = readIdentifier(c);
|
|
switch (token) {
|
|
case T_POP_IF:
|
|
lexer_IncIFDepth();
|
|
break;
|
|
|
|
case T_POP_ELIF:
|
|
if (lexer_ReachedELSEBlock())
|
|
fatalerror("Found ELIF after an ELSE block\n");
|
|
goto maybeFinish;
|
|
|
|
case T_POP_ELSE:
|
|
if (lexer_ReachedELSEBlock())
|
|
fatalerror("Found ELSE after an ELSE block\n");
|
|
lexer_ReachELSEBlock();
|
|
/* fallthrough */
|
|
maybeFinish:
|
|
if (toEndc) /* Ignore ELIF and ELSE, go to ENDC */
|
|
break;
|
|
/* fallthrough */
|
|
case T_POP_ENDC:
|
|
if (lexer_GetIFDepth() == startingDepth)
|
|
goto finish;
|
|
if (token == T_POP_ENDC)
|
|
lexer_DecIFDepth();
|
|
}
|
|
}
|
|
atLineStart = false;
|
|
}
|
|
|
|
/* Read chars until EOL */
|
|
do {
|
|
int c = nextChar();
|
|
|
|
if (c == EOF) {
|
|
token = T_EOF;
|
|
goto finish;
|
|
} else if (c == '\\') {
|
|
/* Unconditionally skip the next char, including line conts */
|
|
c = nextChar();
|
|
} else if (c == '\r' || c == '\n') {
|
|
atLineStart = true;
|
|
}
|
|
|
|
if (c == '\r' || c == '\n') {
|
|
/* Handle CRLF before nextLine() since shiftChars updates colNo */
|
|
handleCRLF(c);
|
|
/* Do this both on line continuations and plain EOLs */
|
|
nextLine();
|
|
}
|
|
} while (!atLineStart);
|
|
}
|
|
finish:
|
|
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
lexerState->atLineStart = false;
|
|
|
|
return token;
|
|
}
|
|
|
|
static int yylex_SKIP_TO_ELIF(void)
|
|
{
|
|
return skipIfBlock(false);
|
|
}
|
|
|
|
static int yylex_SKIP_TO_ENDC(void)
|
|
{
|
|
return skipIfBlock(true);
|
|
}
|
|
|
|
static int yylex_SKIP_TO_ENDR(void)
|
|
{
|
|
dbgPrint("Skipping remainder of REPT/FOR block\n");
|
|
lexer_SetMode(LEXER_NORMAL);
|
|
int depth = 1;
|
|
bool atLineStart = lexerState->atLineStart;
|
|
|
|
/* Prevent expanding macro args and symbol interpolation in this state */
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
|
|
for (;;) {
|
|
if (atLineStart) {
|
|
int c;
|
|
|
|
for (;;) {
|
|
c = peek(0);
|
|
if (!isWhitespace(c))
|
|
break;
|
|
shiftChars(1);
|
|
}
|
|
|
|
if (startsIdentifier(c)) {
|
|
shiftChars(1);
|
|
switch (readIdentifier(c)) {
|
|
case T_POP_FOR:
|
|
case T_POP_REPT:
|
|
depth++;
|
|
break;
|
|
|
|
case T_POP_ENDR:
|
|
depth--;
|
|
if (!depth)
|
|
goto finish;
|
|
break;
|
|
|
|
case T_POP_IF:
|
|
lexer_IncIFDepth();
|
|
break;
|
|
|
|
case T_POP_ENDC:
|
|
lexer_DecIFDepth();
|
|
}
|
|
}
|
|
atLineStart = false;
|
|
}
|
|
|
|
/* Read chars until EOL */
|
|
do {
|
|
int c = nextChar();
|
|
|
|
if (c == EOF) {
|
|
goto finish;
|
|
} else if (c == '\\') {
|
|
/* Unconditionally skip the next char, including line conts */
|
|
c = nextChar();
|
|
} else if (c == '\r' || c == '\n') {
|
|
atLineStart = true;
|
|
}
|
|
|
|
if (c == '\r' || c == '\n') {
|
|
/* Handle CRLF before nextLine() since shiftChars updates colNo */
|
|
handleCRLF(c);
|
|
/* Do this both on line continuations and plain EOLs */
|
|
nextLine();
|
|
}
|
|
} while (!atLineStart);
|
|
}
|
|
finish:
|
|
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
lexerState->atLineStart = false;
|
|
|
|
/* yywrap() will finish the REPT/FOR loop */
|
|
return T_EOF;
|
|
}
|
|
|
|
int yylex(void)
|
|
{
|
|
restart:
|
|
if (lexerState->atLineStart && lexerStateEOL) {
|
|
lexer_SetState(lexerStateEOL);
|
|
lexerStateEOL = NULL;
|
|
}
|
|
if (lexerState->atLineStart) {
|
|
/* Newlines read within an expansion should not increase the line count */
|
|
if (!lexerState->expansions || lexerState->expansions->distance)
|
|
nextLine();
|
|
}
|
|
|
|
static int (* const lexerModeFuncs[])(void) = {
|
|
[LEXER_NORMAL] = yylex_NORMAL,
|
|
[LEXER_RAW] = yylex_RAW,
|
|
[LEXER_SKIP_TO_ELIF] = yylex_SKIP_TO_ELIF,
|
|
[LEXER_SKIP_TO_ENDC] = yylex_SKIP_TO_ENDC,
|
|
[LEXER_SKIP_TO_ENDR] = yylex_SKIP_TO_ENDR,
|
|
};
|
|
int token = lexerModeFuncs[lexerState->mode]();
|
|
|
|
if (token == T_EOF) {
|
|
if (lexerState->lastToken != T_NEWLINE) {
|
|
dbgPrint("Forcing EOL at EOF\n");
|
|
token = T_NEWLINE;
|
|
} else {
|
|
/* Try to switch to new buffer; if it succeeds, scan again */
|
|
dbgPrint("Reached EOF!\n");
|
|
/* Captures end at their buffer's boundary no matter what */
|
|
if (!lexerState->capturing) {
|
|
if (!yywrap())
|
|
goto restart;
|
|
dbgPrint("Reached end of input.\n");
|
|
return T_EOF;
|
|
}
|
|
}
|
|
}
|
|
lexerState->lastToken = token;
|
|
lexerState->atLineStart = token == T_NEWLINE;
|
|
|
|
return token;
|
|
}
|
|
|
|
static char *startCapture(void)
|
|
{
|
|
lexerState->capturing = true;
|
|
lexerState->captureSize = 0;
|
|
lexerState->disableMacroArgs = true;
|
|
lexerState->disableInterpolation = true;
|
|
|
|
if (lexerState->isMmapped && !lexerState->expansions) {
|
|
return &lexerState->ptr[lexerState->offset];
|
|
} else {
|
|
lexerState->captureCapacity = 128; /* The initial size will be twice that */
|
|
reallocCaptureBuf();
|
|
return lexerState->captureBuf;
|
|
}
|
|
}
|
|
|
|
void lexer_CaptureRept(struct CaptureBody *capture)
|
|
{
|
|
capture->lineNo = lexer_GetLineNo();
|
|
|
|
char *captureStart = startCapture();
|
|
unsigned int level = 0;
|
|
int c;
|
|
|
|
/*
|
|
* Due to parser internals, it reads the EOL after the expression before calling this.
|
|
* Thus, we don't need to keep one in the buffer afterwards.
|
|
* The following assertion checks that.
|
|
*/
|
|
assert(lexerState->atLineStart);
|
|
for (;;) {
|
|
nextLine();
|
|
/* We're at line start, so attempt to match a `REPT` or `ENDR` token */
|
|
do { /* Discard initial whitespace */
|
|
c = nextChar();
|
|
} while (isWhitespace(c));
|
|
/* Now, try to match `REPT`, `FOR` or `ENDR` as a **whole** identifier */
|
|
if (startsIdentifier(c)) {
|
|
switch (readIdentifier(c)) {
|
|
case T_POP_REPT:
|
|
case T_POP_FOR:
|
|
level++;
|
|
/* Ignore the rest of that line */
|
|
break;
|
|
|
|
case T_POP_ENDR:
|
|
if (!level) {
|
|
/*
|
|
* The final ENDR has been captured, but we don't want it!
|
|
* We know we have read exactly "ENDR", not e.g. an EQUS
|
|
*/
|
|
lexerState->captureSize -= strlen("ENDR");
|
|
lexerState->lastToken = T_POP_ENDR; // Force EOL at EOF
|
|
goto finish;
|
|
}
|
|
level--;
|
|
}
|
|
}
|
|
|
|
/* Just consume characters until EOL or EOF */
|
|
for (;;) {
|
|
if (c == EOF) {
|
|
error("Unterminated REPT/FOR block\n");
|
|
goto finish;
|
|
} else if (c == '\n' || c == '\r') {
|
|
handleCRLF(c);
|
|
break;
|
|
}
|
|
c = nextChar();
|
|
}
|
|
}
|
|
|
|
finish:
|
|
capture->body = captureStart;
|
|
capture->size = lexerState->captureSize;
|
|
lexerState->capturing = false;
|
|
lexerState->captureBuf = NULL;
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
lexerState->atLineStart = false;
|
|
}
|
|
|
|
void lexer_CaptureMacroBody(struct CaptureBody *capture)
|
|
{
|
|
capture->lineNo = lexer_GetLineNo();
|
|
|
|
char *captureStart = startCapture();
|
|
int c;
|
|
|
|
/* If the file is `mmap`ed, we need not to unmap it to keep access to the macro */
|
|
if (lexerState->isMmapped)
|
|
lexerState->isReferenced = true;
|
|
|
|
/*
|
|
* Due to parser internals, it reads the EOL after the expression before calling this.
|
|
* Thus, we don't need to keep one in the buffer afterwards.
|
|
* The following assertion checks that.
|
|
*/
|
|
assert(lexerState->atLineStart);
|
|
for (;;) {
|
|
nextLine();
|
|
/* We're at line start, so attempt to match an `ENDM` token */
|
|
do { /* Discard initial whitespace */
|
|
c = nextChar();
|
|
} while (isWhitespace(c));
|
|
/* Now, try to match `ENDM` as a **whole** identifier */
|
|
if (startsIdentifier(c)) {
|
|
switch (readIdentifier(c)) {
|
|
case T_POP_ENDM:
|
|
/*
|
|
* The ENDM has been captured, but we don't want it!
|
|
* We know we have read exactly "ENDM", not e.g. an EQUS
|
|
*/
|
|
lexerState->captureSize -= strlen("ENDM");
|
|
lexerState->lastToken = T_POP_ENDM; // Force EOL at EOF
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
/* Just consume characters until EOL or EOF */
|
|
for (;;) {
|
|
if (c == EOF) {
|
|
error("Unterminated macro definition\n");
|
|
goto finish;
|
|
} else if (c == '\n' || c == '\r') {
|
|
handleCRLF(c);
|
|
break;
|
|
}
|
|
c = nextChar();
|
|
}
|
|
}
|
|
|
|
finish:
|
|
capture->body = captureStart;
|
|
capture->size = lexerState->captureSize;
|
|
lexerState->capturing = false;
|
|
lexerState->captureBuf = NULL;
|
|
lexerState->disableMacroArgs = false;
|
|
lexerState->disableInterpolation = false;
|
|
lexerState->atLineStart = false;
|
|
}
|