Files
rgbds/src/asm/section.cpp
2025-09-04 01:29:50 -04:00

1150 lines
29 KiB
C++

// SPDX-License-Identifier: MIT
#include "asm/section.hpp"
#include <algorithm>
#include <deque>
#include <errno.h>
#include <inttypes.h>
#include <iterator>
#include <optional>
#include <stack>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <utility>
#include <vector>
#include "helpers.hpp"
#include "itertools.hpp" // InsertionOrderedMap
#include "linkdefs.hpp"
#include "asm/fstack.hpp"
#include "asm/lexer.hpp"
#include "asm/main.hpp"
#include "asm/output.hpp"
#include "asm/rpn.hpp"
#include "asm/symbol.hpp"
#include "asm/warning.hpp"
using namespace std::literals;
struct UnionStackEntry {
uint32_t start;
uint32_t size;
};
struct SectionStackEntry {
Section *section;
Section *loadSection;
std::pair<Symbol const *, Symbol const *> labelScopes;
uint32_t offset;
int32_t loadOffset;
std::stack<UnionStackEntry> unionStack;
};
static Section *currentSection = nullptr;
static InsertionOrderedMap<Section> sections;
static uint32_t curOffset; // Offset into the current section (see `sect_GetSymbolOffset`)
static std::deque<SectionStackEntry> sectionStack;
static Section *currentLoadSection = nullptr;
static std::pair<Symbol const *, Symbol const *> currentLoadLabelScopes = {nullptr, nullptr};
static int32_t loadOffset; // Offset into the LOAD section's parent (see sect_GetOutputOffset)
static std::stack<UnionStackEntry> currentUnionStack;
[[nodiscard]]
static bool requireSection() {
if (currentSection) {
return true;
}
error("Cannot output data outside of a `SECTION`");
return false;
}
[[nodiscard]]
static bool requireCodeSection() {
if (!requireSection()) {
return false;
}
if (sectTypeHasData(currentSection->type)) {
return true;
}
error(
"Section \"%s\" cannot contain code or data (not `ROM0` or `ROMX`)",
currentSection->name.c_str()
);
return false;
}
size_t sect_CountSections() {
return sections.size();
}
void sect_ForEach(void (*callback)(Section &)) {
for (Section &sect : sections) {
callback(sect);
}
}
void sect_CheckSizes() {
for (Section const &sect : sections) {
if (uint32_t maxSize = sectionTypeInfo[sect.type].size; sect.size > maxSize) {
error(
"Section \"%s\" grew too big (max size = 0x%" PRIX32 " bytes, reached 0x%" PRIX32
")",
sect.name.c_str(),
maxSize,
sect.size
);
}
}
}
Section *sect_FindSectionByName(std::string const &name) {
auto index = sections.findIndex(name);
return index ? &sections[*index] : nullptr;
}
#define sectError(...) \
do { \
error(__VA_ARGS__); \
++nbSectErrors; \
} while (0)
static unsigned int mergeSectUnion(
Section &sect, SectionType type, uint32_t org, uint8_t alignment, uint16_t alignOffset
) {
unsigned int nbSectErrors = 0;
assume(alignment < 16); // Should be ensured by the caller
uint32_t alignSize = 1u << alignment;
uint32_t alignMask = alignSize - 1;
assume(sect.align <= 16); // Left-shifting by 32 or more would be UB
uint32_t sectAlignSize = 1u << sect.align;
uint32_t sectAlignMask = sectAlignSize - 1;
// Unionized sections only need "compatible" constraints, and they end up with the strictest
// combination of both.
if (sectTypeHasData(type)) {
sectError("Cannot declare ROM sections as `UNION`");
}
if (org != UINT32_MAX) {
// If both are fixed, they must be the same
if (sect.org != UINT32_MAX && sect.org != org) {
sectError(
"Section already declared as fixed at different address $%04" PRIx32, sect.org
);
} else if (sect.align != 0 && ((org - sect.alignOfs) & sectAlignMask)) {
sectError(
"Section already declared as aligned to %" PRIu32 " bytes (offset %" PRIu16 ")",
sectAlignSize,
sect.alignOfs
);
} else {
// Otherwise, just override
sect.org = org;
}
} else if (alignment != 0) {
// Make sure any fixed address given is compatible
if (sect.org != UINT32_MAX) {
if ((sect.org - alignOffset) & alignMask) {
sectError(
"Section already declared as fixed at incompatible address $%04" PRIx32,
sect.org
);
}
// Check if alignment offsets are compatible
} else if ((alignOffset & sectAlignMask) != (sect.alignOfs & alignMask)) {
sectError(
"Section already declared with incompatible %" PRIu32
"-byte alignment (offset %" PRIu16 ")",
sectAlignSize,
sect.alignOfs
);
} else if (alignment > sect.align) {
// If the section is not fixed, its alignment is the largest of both
sect.align = alignment;
sect.alignOfs = alignOffset;
}
}
return nbSectErrors;
}
static unsigned int
mergeFragments(Section &sect, uint32_t org, uint8_t alignment, uint16_t alignOffset) {
unsigned int nbSectErrors = 0;
assume(alignment < 16); // Should be ensured by the caller
uint32_t alignSize = 1u << alignment;
uint32_t alignMask = alignSize - 1;
assume(sect.align <= 16); // Left-shifting by 32 or more would be UB
uint32_t sectAlignSize = 1u << sect.align;
uint32_t sectAlignMask = sectAlignSize - 1;
// Fragments only need "compatible" constraints, and they end up with the strictest
// combination of both.
// The merging is however performed at the *end* of the original section!
if (org != UINT32_MAX) {
uint16_t curOrg = org - sect.size;
// If both are fixed, they must be the same
if (sect.org != UINT32_MAX && sect.org != curOrg) {
sectError(
"Section already declared as fixed at incompatible address $%04" PRIx32, sect.org
);
} else if (sect.align != 0 && ((curOrg - sect.alignOfs) & sectAlignMask)) {
sectError(
"Section already declared as aligned to %" PRIu32 " bytes (offset %" PRIu16 ")",
sectAlignSize,
sect.alignOfs
);
} else {
// Otherwise, just override
sect.org = curOrg;
}
} else if (alignment != 0) {
int32_t curOfs = (alignOffset - sect.size) % alignSize;
if (curOfs < 0) {
curOfs += alignSize;
}
// Make sure any fixed address given is compatible
if (sect.org != UINT32_MAX) {
if ((sect.org - curOfs) & alignMask) {
sectError(
"Section already declared as fixed at incompatible address $%04" PRIx32,
sect.org
);
}
// Check if alignment offsets are compatible
} else if ((curOfs & sectAlignMask) != (sect.alignOfs & alignMask)) {
sectError(
"Section already declared with incompatible %" PRIu32
"-byte alignment (offset %" PRIu16 ")",
sectAlignSize,
sect.alignOfs
);
} else if (alignment > sect.align) {
// If the section is not fixed, its alignment is the largest of both
sect.align = alignment;
sect.alignOfs = curOfs;
}
}
return nbSectErrors;
}
static void mergeSections(
Section &sect,
SectionType type,
uint32_t org,
uint32_t bank,
uint8_t alignment,
uint16_t alignOffset,
SectionModifier mod
) {
unsigned int nbSectErrors = 0;
if (type != sect.type) {
sectError(
"Section already exists but with type `%s`", sectionTypeInfo[sect.type].name.c_str()
);
}
if (sect.modifier != mod) {
sectError("Section already declared as `SECTION %s`", sectionModNames[sect.modifier]);
} else {
switch (mod) {
case SECTION_UNION:
case SECTION_FRAGMENT:
nbSectErrors += mod == SECTION_UNION
? mergeSectUnion(sect, type, org, alignment, alignOffset)
: mergeFragments(sect, org, alignment, alignOffset);
// Common checks
// If the section's bank is unspecified, override it
if (sect.bank == UINT32_MAX) {
sect.bank = bank;
}
// If both specify a bank, it must be the same one
else if (bank != UINT32_MAX && sect.bank != bank) {
sectError("Section already declared with different bank %" PRIu32, sect.bank);
}
break;
case SECTION_NORMAL:
errorNoTrace([&]() {
fputs("Section already defined\n", stderr);
fstk_TraceCurrent();
fputs(" and also:\n", stderr);
sect.src->printBacktrace(sect.fileLine);
++nbSectErrors;
});
break;
}
}
if (nbSectErrors) {
fatal(
"Cannot create section \"%s\" (%u error%s)",
sect.name.c_str(),
nbSectErrors,
nbSectErrors == 1 ? "" : "s"
);
}
}
#undef sectError
static Section *createSection(
std::string const &name,
SectionType type,
uint32_t org,
uint32_t bank,
uint8_t alignment,
uint16_t alignOffset,
SectionModifier mod
) {
// Add the new section to the list
Section &sect = sections.add(name);
sect.name = name;
sect.type = type;
sect.modifier = mod;
sect.src = fstk_GetFileStack();
sect.fileLine = lexer_GetLineNo();
sect.size = 0;
sect.org = org;
sect.bank = bank;
sect.align = alignment;
sect.alignOfs = alignOffset;
out_RegisterNode(sect.src);
// It is only needed to allocate memory for ROM sections.
if (sectTypeHasData(type)) {
sect.data.resize(sectionTypeInfo[type].size);
}
return &sect;
}
static Section *createSectionFragmentLiteral(Section const &parent) {
assume(sections.contains(parent.name));
Section &sect = sections.addAnonymous();
sect.name = parent.name;
sect.type = parent.type;
sect.modifier = SECTION_FRAGMENT;
sect.src = fstk_GetFileStack();
sect.fileLine = lexer_GetLineNo();
sect.size = 0;
sect.org = UINT32_MAX;
sect.bank = parent.bank == 0 ? UINT32_MAX : parent.bank;
sect.align = 0;
sect.alignOfs = 0;
out_RegisterNode(sect.src);
// Section fragment literals must be ROM sections.
assume(sectTypeHasData(sect.type));
sect.data.resize(sectionTypeInfo[sect.type].size);
return &sect;
}
static Section *getSection(
std::string const &name,
SectionType type,
uint32_t org,
SectionSpec const &attrs,
SectionModifier mod
) {
uint32_t bank = attrs.bank;
uint8_t alignment = attrs.alignment;
uint16_t alignOffset = attrs.alignOfs;
assume(alignment <= 16); // Should be ensured by the caller
uint32_t alignSize = 1u << alignment;
uint32_t alignMask = alignSize - 1;
// First, validate parameters, and normalize them if applicable
if (bank != UINT32_MAX) {
if (type != SECTTYPE_ROMX && type != SECTTYPE_VRAM && type != SECTTYPE_SRAM
&& type != SECTTYPE_WRAMX) {
error("`BANK` only allowed for `ROMX`, `WRAMX`, `SRAM`, or `VRAM` sections");
} else if (bank < sectionTypeInfo[type].firstBank
|| bank > sectionTypeInfo[type].lastBank) {
error(
"%s bank value $%04" PRIx32 " out of range ($%04" PRIx32 " to $%04" PRIx32 ")",
sectionTypeInfo[type].name.c_str(),
bank,
sectionTypeInfo[type].firstBank,
sectionTypeInfo[type].lastBank
);
}
} else if (sectTypeBanks(type) == 1) {
// If the section type only has a single bank, implicitly force it
bank = sectionTypeInfo[type].firstBank;
}
// This should be redundant, as the parser guarantees that `AlignmentSpec` will be valid.
if (alignOffset >= alignSize) {
// LCOV_EXCL_START
error(
"Alignment offset (%" PRIu16 ") must be smaller than alignment size (%" PRIu32 ")",
alignOffset,
alignSize
);
alignOffset = 0;
// LCOV_EXCL_STOP
}
if (org != UINT32_MAX) {
if (org < sectionTypeInfo[type].startAddr || org > sectTypeEndAddr(type)) {
error(
"Section \"%s\"'s fixed address $%04" PRIx32 " is outside of range [$%04" PRIx16
"; $%04" PRIx16 "]",
name.c_str(),
org,
sectionTypeInfo[type].startAddr,
sectTypeEndAddr(type)
);
}
}
if (alignment != 0) {
// It doesn't make sense to have both alignment and org set
if (org != UINT32_MAX) {
if ((org - alignOffset) & alignMask) {
error("Section \"%s\"'s fixed address does not match its alignment", name.c_str());
}
alignment = 0; // Ignore it if it's satisfied
} else if (sectionTypeInfo[type].startAddr & alignMask) {
error(
"Section \"%s\"'s alignment cannot be attained in %s",
name.c_str(),
sectionTypeInfo[type].name.c_str()
);
alignment = 0; // Ignore it if it's unattainable
org = 0;
} else if (alignment == 16) {
// Treat an alignment of 16 as fixing the address.
alignment = 0;
org = alignOffset;
// The address is known to be valid, since the alignment itself is.
}
}
// Check if another section exists with the same name; merge if yes, otherwise create one
Section *sect = sect_FindSectionByName(name);
if (sect) {
mergeSections(*sect, type, org, bank, alignment, alignOffset, mod);
} else {
sect = createSection(name, type, org, bank, alignment, alignOffset, mod);
}
return sect;
}
static void changeSection() {
if (!currentUnionStack.empty()) {
fatal("Cannot change the section within a `UNION`");
}
sym_ResetCurrentLabelScopes();
}
uint32_t Section::getID() const {
// Section fragments share the same name but have different IDs, so search by identity
if (auto search =
std::find_if(RANGE(sections), [this](Section const &s) { return &s == this; });
search != sections.end()) {
return static_cast<uint32_t>(std::distance(sections.begin(), search));
}
return UINT32_MAX; // LCOV_EXCL_LINE
}
bool Section::isSizeKnown() const {
// SECTION UNION and SECTION FRAGMENT can still grow
if (modifier != SECTION_NORMAL) {
return false;
}
// The current section (or current load section if within one) is still growing
if (this == currentSection || this == currentLoadSection) {
return false;
}
// Any section on the stack is still growing
for (SectionStackEntry &entry : sectionStack) {
if (entry.section && entry.section->name == name) {
return false;
}
}
return true;
}
void sect_NewSection(
std::string const &name,
SectionType type,
uint32_t org,
SectionSpec const &attrs,
SectionModifier mod
) {
for (SectionStackEntry &entry : sectionStack) {
if (entry.section && entry.section->name == name) {
fatal("Section \"%s\" is already on the stack", name.c_str());
}
}
if (currentLoadSection) {
sect_EndLoadSection("SECTION");
}
Section *sect = getSection(name, type, org, attrs, mod);
changeSection();
curOffset = mod == SECTION_UNION ? 0 : sect->size;
loadOffset = 0; // This is still used when checking for section size overflow!
currentSection = sect;
}
void sect_SetLoadSection(
std::string const &name,
SectionType type,
uint32_t org,
SectionSpec const &attrs,
SectionModifier mod
) {
// Important info: currently, UNION and LOAD cannot interact, since UNION is prohibited in
// "code" sections, whereas LOAD is restricted to them.
// Therefore, any interactions are NOT TESTED, so lift either of those restrictions at
// your own peril! ^^
if (!requireCodeSection()) {
return;
}
if (sectTypeHasData(type)) {
error("`LOAD` blocks cannot create a ROM section");
return;
}
if (currentLoadSection) {
sect_EndLoadSection("LOAD");
}
Section *sect = getSection(name, type, org, attrs, mod);
currentLoadLabelScopes = sym_GetCurrentLabelScopes();
changeSection();
loadOffset = curOffset - (mod == SECTION_UNION ? 0 : sect->size);
curOffset -= loadOffset;
currentLoadSection = sect;
}
void sect_EndLoadSection(char const *cause) {
if (cause) {
warning(WARNING_UNTERMINATED_LOAD, "`LOAD` block without `ENDL` terminated by `%s`", cause);
}
if (!currentLoadSection) {
error("Found `ENDL` outside of a `LOAD` block");
return;
}
changeSection();
curOffset += loadOffset;
loadOffset = 0;
currentLoadSection = nullptr;
sym_SetCurrentLabelScopes(currentLoadLabelScopes);
}
void sect_CheckLoadClosed() {
if (currentLoadSection) {
warning(WARNING_UNTERMINATED_LOAD, "`LOAD` block without `ENDL` terminated by EOF");
}
}
Section *sect_GetSymbolSection() {
return currentLoadSection ? currentLoadSection : currentSection;
}
uint32_t sect_GetSymbolOffset() {
return curOffset;
}
uint32_t sect_GetOutputOffset() {
return curOffset + loadOffset;
}
std::optional<uint32_t> sect_GetOutputBank() {
return currentSection ? std::optional<uint32_t>(currentSection->bank) : std::nullopt;
}
Patch *sect_AddOutputPatch() {
return currentSection ? &currentSection->patches.emplace_front() : nullptr;
}
// Returns how many bytes need outputting for the specified alignment and offset to succeed
uint32_t sect_GetAlignBytes(uint8_t alignment, uint16_t offset) {
Section *sect = sect_GetSymbolSection();
if (!sect) {
return 0;
}
bool isFixed = sect->org != UINT32_MAX;
// If the section is not aligned, no bytes are needed
// (fixed sections count as being maximally aligned for this purpose)
uint8_t curAlignment = isFixed ? 16 : sect->align;
if (curAlignment == 0) {
return 0;
}
// We need `(pcValue + curOffset + return value) % (1 << alignment) == offset`
uint16_t pcValue = isFixed ? sect->org : sect->alignOfs;
return static_cast<uint16_t>(offset - curOffset - pcValue)
% (1u << std::min(alignment, curAlignment));
}
void sect_AlignPC(uint8_t alignment, uint16_t offset) {
if (!requireSection()) {
return;
}
assume(alignment <= 16); // Should be ensured by the caller
uint32_t alignSize = 1u << alignment;
Section *sect = sect_GetSymbolSection();
assume(sect->align <= 16); // Left-shifting by 32 or more would be UB
uint32_t sectAlignSize = 1u << sect->align;
if (sect->org != UINT32_MAX) {
if (uint32_t actualOffset = (sect->org + curOffset) % alignSize; actualOffset != offset) {
error(
"Section is misaligned (at PC = $%04" PRIx32 ", expected ALIGN[%" PRIu32
", %" PRIu32 "], got ALIGN[%" PRIu32 ", %" PRIu32 "])",
sect->org + curOffset,
alignment,
offset,
alignment,
actualOffset
);
}
} else if (uint32_t actualOffset = (sect->alignOfs + curOffset) % alignSize;
sect->align != 0 && actualOffset % sectAlignSize != offset % sectAlignSize) {
error(
"Section is misaligned ($%04" PRIx32 " bytes into the section, expected ALIGN[%" PRIu32
", %" PRIu32 "], got ALIGN[%" PRIu32 ", %" PRIu32 "])",
curOffset,
alignment,
offset,
alignment,
actualOffset
);
} else if (alignment == 16) {
// Treat an alignment large enough as fixing the address.
// Note that this also ensures that a section's alignment never becomes 16 or greater.
sect->align = 0; // Reset the alignment, since we're fixing the address.
sect->org = offset - curOffset;
} else if (alignment > sect->align) {
sect->align = alignment;
// We need `(sect->alignOfs + curOffset) % alignSize == offset`
sect->alignOfs = (offset - curOffset) % alignSize;
}
}
static void growSection(uint32_t growth) {
if (growth > 0 && curOffset > UINT32_MAX - growth) {
fatal("Section size would overflow internal counter");
}
curOffset += growth;
if (uint32_t outOffset = sect_GetOutputOffset(); outOffset > currentSection->size) {
currentSection->size = outOffset;
}
if (currentLoadSection && curOffset > currentLoadSection->size) {
currentLoadSection->size = curOffset;
}
}
static void writeByte(uint8_t byte) {
if (uint32_t index = sect_GetOutputOffset(); index < currentSection->data.size()) {
currentSection->data[index] = byte;
}
growSection(1);
}
static void writeWord(uint16_t value) {
writeByte(value & 0xFF);
writeByte(value >> 8);
}
static void writeLong(uint32_t value) {
writeByte(value & 0xFF);
writeByte(value >> 8);
writeByte(value >> 16);
writeByte(value >> 24);
}
static void createPatch(PatchType type, Expression const &expr, uint32_t pcShift) {
out_CreatePatch(type, expr, sect_GetOutputOffset(), pcShift);
}
void sect_StartUnion() {
// Important info: currently, UNION and LOAD cannot interact, since UNION is prohibited in
// "code" sections, whereas LOAD is restricted to them.
// Therefore, any interactions are NOT TESTED, so lift either of those restrictions at
// your own peril! ^^
if (!currentSection) {
error("`UNION`s must be inside a `SECTION`");
return;
}
if (sectTypeHasData(currentSection->type)) {
error("Cannot use `UNION` inside of `ROM0` or `ROMX` sections");
return;
}
currentUnionStack.push({.start = curOffset, .size = 0});
}
static void endUnionMember() {
UnionStackEntry &member = currentUnionStack.top();
uint32_t memberSize = curOffset - member.start;
if (memberSize > member.size) {
member.size = memberSize;
}
curOffset = member.start;
}
void sect_NextUnionMember() {
if (currentUnionStack.empty()) {
error("Found `NEXTU` outside of a `UNION` construct");
return;
}
endUnionMember();
}
void sect_EndUnion() {
if (currentUnionStack.empty()) {
error("Found `ENDU` outside of a `UNION` construct");
return;
}
endUnionMember();
curOffset += currentUnionStack.top().size;
currentUnionStack.pop();
}
void sect_CheckUnionClosed() {
if (!currentUnionStack.empty()) {
error("Unterminated `UNION` construct");
}
}
void sect_ConstByte(uint8_t byte) {
if (!requireCodeSection()) {
return;
}
writeByte(byte);
}
void sect_ByteString(std::vector<int32_t> const &str) {
if (!requireCodeSection()) {
return;
}
for (int32_t unit : str) {
if (!checkNBit(unit, 8, "All character units")) {
break;
}
}
for (int32_t unit : str) {
writeByte(static_cast<uint8_t>(unit));
}
}
void sect_WordString(std::vector<int32_t> const &str) {
if (!requireCodeSection()) {
return;
}
for (int32_t unit : str) {
if (!checkNBit(unit, 16, "All character units")) {
break;
}
}
for (int32_t unit : str) {
writeWord(static_cast<uint16_t>(unit));
}
}
void sect_LongString(std::vector<int32_t> const &str) {
if (!requireCodeSection()) {
return;
}
for (int32_t unit : str) {
writeLong(static_cast<uint32_t>(unit));
}
}
void sect_Skip(uint32_t skip, bool ds) {
if (!requireSection()) {
return;
}
if (!sectTypeHasData(currentSection->type)) {
growSection(skip);
} else {
if (!ds) {
warning(
WARNING_EMPTY_DATA_DIRECTIVE,
"`%s` directive without data in ROM",
(skip == 4) ? "DL"
: (skip == 2) ? "DW"
: "DB"
);
}
// We know we're in a code SECTION
while (skip--) {
writeByte(options.padByte);
}
}
}
void sect_RelByte(Expression const &expr, uint32_t pcShift) {
if (!requireCodeSection()) {
return;
}
if (!expr.isKnown()) {
createPatch(PATCHTYPE_BYTE, expr, pcShift);
writeByte(0);
} else {
writeByte(expr.value());
}
}
void sect_RelBytes(uint32_t n, std::vector<Expression> const &exprs) {
if (!requireCodeSection()) {
return;
}
for (uint32_t i = 0; i < n; ++i) {
if (Expression const &expr = exprs[i % exprs.size()]; !expr.isKnown()) {
createPatch(PATCHTYPE_BYTE, expr, i);
writeByte(0);
} else {
writeByte(expr.value());
}
}
}
void sect_RelWord(Expression const &expr, uint32_t pcShift) {
if (!requireCodeSection()) {
return;
}
if (!expr.isKnown()) {
createPatch(PATCHTYPE_WORD, expr, pcShift);
writeWord(0);
} else {
writeWord(expr.value());
}
}
void sect_RelLong(Expression const &expr, uint32_t pcShift) {
if (!requireCodeSection()) {
return;
}
if (!expr.isKnown()) {
createPatch(PATCHTYPE_LONG, expr, pcShift);
writeLong(0);
} else {
writeLong(expr.value());
}
}
void sect_PCRelByte(Expression const &expr, uint32_t pcShift) {
if (!requireCodeSection()) {
return;
}
if (Symbol const *pc = sym_GetPC(); !expr.isDiffConstant(pc)) {
createPatch(PATCHTYPE_JR, expr, pcShift);
writeByte(0);
} else {
Symbol const *sym = expr.symbolOf();
// The offset wraps (jump from ROM to HRAM, for example)
int16_t offset;
// Offset is relative to the byte *after* the operand
if (sym == pc) {
offset = -2; // PC as operand to `jr` is lower than reference PC by 2
} else {
offset = sym->getValue() - (pc->getValue() + 1);
}
if (offset < -128 || offset > 127) {
error(
"`JR` target must be between -128 and 127 bytes away, not %" PRId16
"; use `JP` instead",
offset
);
writeByte(0);
} else {
writeByte(offset);
}
}
}
bool sect_BinaryFile(std::string const &name, uint32_t startPos) {
if (!requireCodeSection()) {
return false;
}
FILE *file = nullptr;
if (std::optional<std::string> fullPath = fstk_FindFile(name); fullPath) {
file = fopen(fullPath->c_str(), "rb");
}
if (!file) {
return fstk_FileError(name, "INCBIN");
}
Defer closeFile{[&] { fclose(file); }};
if (fseek(file, 0, SEEK_END) == 0) {
if (startPos > ftell(file)) {
error("Specified start position is greater than length of file \"%s\"", name.c_str());
return false;
}
// The file is seekable; skip to the specified start position
fseek(file, startPos, SEEK_SET);
} else {
if (errno != ESPIPE) {
// LCOV_EXCL_START
error(
"Error determining size of `INCBIN` file \"%s\": %s", name.c_str(), strerror(errno)
);
// LCOV_EXCL_STOP
}
// The file isn't seekable, so we'll just skip bytes one at a time
while (startPos--) {
if (fgetc(file) == EOF) {
error(
"Specified start position is greater than length of file \"%s\"", name.c_str()
);
return false;
}
}
}
for (int byte; (byte = fgetc(file)) != EOF;) {
writeByte(byte);
}
if (ferror(file)) {
// LCOV_EXCL_START
error("Error reading `INCBIN` file \"%s\": %s", name.c_str(), strerror(errno));
// LCOV_EXCL_STOP
}
return false;
}
bool sect_BinaryFileSlice(std::string const &name, uint32_t startPos, uint32_t length) {
if (!requireCodeSection()) {
return false;
}
if (length == 0) { // Don't even bother with 0-byte slices
return false;
}
FILE *file = nullptr;
if (std::optional<std::string> fullPath = fstk_FindFile(name); fullPath) {
file = fopen(fullPath->c_str(), "rb");
}
if (!file) {
return fstk_FileError(name, "INCBIN");
}
Defer closeFile{[&] { fclose(file); }};
if (fseek(file, 0, SEEK_END) == 0) {
if (long fsize = ftell(file); startPos > fsize) {
error("Specified start position is greater than length of file \"%s\"", name.c_str());
return false;
} else if (startPos + length > fsize) {
error(
"Specified range in `INCBIN` file \"%s\" is out of bounds (%" PRIu32 " + %" PRIu32
" > %ld)",
name.c_str(),
startPos,
length,
fsize
);
return false;
}
// The file is seekable; skip to the specified start position
fseek(file, startPos, SEEK_SET);
} else {
if (errno != ESPIPE) {
// LCOV_EXCL_START
error(
"Error determining size of `INCBIN` file \"%s\": %s", name.c_str(), strerror(errno)
);
// LCOV_EXCL_STOP
}
// The file isn't seekable, so we'll just skip bytes one at a time
while (startPos--) {
if (fgetc(file) == EOF) {
error(
"Specified start position is greater than length of file \"%s\"", name.c_str()
);
return false;
}
}
}
while (length--) {
if (int byte = fgetc(file); byte != EOF) {
writeByte(byte);
} else if (ferror(file)) {
// LCOV_EXCL_START
error("Error reading `INCBIN` file \"%s\": %s", name.c_str(), strerror(errno));
// LCOV_EXCL_STOP
} else {
error(
"Premature end of `INCBIN` file \"%s\" (%" PRId32 " bytes left to read)",
name.c_str(),
length + 1
);
}
}
return false;
}
void sect_PushSection() {
sectionStack.push_front({
.section = currentSection,
.loadSection = currentLoadSection,
.labelScopes = sym_GetCurrentLabelScopes(),
.offset = curOffset,
.loadOffset = loadOffset,
.unionStack = {},
});
// Reset the section scope
currentSection = nullptr;
currentLoadSection = nullptr;
sym_ResetCurrentLabelScopes();
std::swap(currentUnionStack, sectionStack.front().unionStack);
}
void sect_PopSection() {
if (sectionStack.empty()) {
fatal("No entries in the section stack");
}
if (currentLoadSection) {
sect_EndLoadSection("POPS");
}
SectionStackEntry entry = sectionStack.front();
sectionStack.pop_front();
changeSection();
currentSection = entry.section;
currentLoadSection = entry.loadSection;
sym_SetCurrentLabelScopes(entry.labelScopes);
curOffset = entry.offset;
loadOffset = entry.loadOffset;
std::swap(currentUnionStack, entry.unionStack);
}
void sect_CheckStack() {
if (!sectionStack.empty()) {
warning(WARNING_UNMATCHED_DIRECTIVE, "`PUSHS` without corresponding `POPS`");
}
}
void sect_EndSection() {
if (!currentSection) {
fatal("Cannot end the section outside of a `SECTION`");
}
if (!currentUnionStack.empty()) {
fatal("Cannot end the section within a `UNION`");
}
if (currentLoadSection) {
sect_EndLoadSection("ENDSECTION");
}
// Reset the section scope
currentSection = nullptr;
sym_ResetCurrentLabelScopes();
}
std::string sect_PushSectionFragmentLiteral() {
static uint64_t nextFragmentLiteralID = 0;
// Like `requireCodeSection` but fatal
if (!currentSection) {
fatal("Cannot output fragment literals outside of a `SECTION`");
}
if (!sectTypeHasData(currentSection->type)) {
fatal(
"Section \"%s\" cannot contain fragment literals (not `ROM0` or `ROMX`)",
currentSection->name.c_str()
);
}
if (currentLoadSection) {
fatal("`LOAD` blocks cannot contain fragment literals");
}
if (currentSection->modifier == SECTION_UNION) {
fatal("`SECTION UNION` cannot contain fragment literals");
}
// A section containing a fragment literal has to become a fragment too
currentSection->modifier = SECTION_FRAGMENT;
Section *parent = currentSection;
sect_PushSection(); // Resets `currentSection`
Section *sect = createSectionFragmentLiteral(*parent);
changeSection();
curOffset = sect->size;
currentSection = sect;
// Return a symbol ID to use for the address of this section fragment
return "$"s + std::to_string(nextFragmentLiteralID++);
}