OpenAssetTools/src/ObjLoading/Game/IW4/AssetLoaders/AssetLoaderTechniqueSet.cpp

1397 lines
60 KiB
C++

#include "AssetLoaderTechniqueSet.h"
#include "AssetLoaderPixelShader.h"
#include "AssetLoaderVertexShader.h"
#include "Game/IW4/IW4.h"
#include "Game/IW4/TechsetConstantsIW4.h"
#include "ObjLoading.h"
#include "Pool/GlobalAssetPool.h"
#include "Shader/D3D9ShaderAnalyser.h"
#include "StateMap/StateMapReader.h"
#include "Techset/TechniqueFileReader.h"
#include "Techset/TechniqueStateMapCache.h"
#include "Techset/TechsetDefinitionCache.h"
#include "Techset/TechsetFileReader.h"
#include "Utils/Alignment.h"
#include "Utils/ClassUtils.h"
#include <cstring>
#include <iostream>
#include <memory>
#include <sstream>
#include <type_traits>
#include <unordered_map>
using namespace IW4;
using namespace std::string_literals;
namespace IW4
{
class LoadedTechnique
{
public:
MaterialTechnique* m_technique;
std::vector<XAssetInfoGeneric*> m_dependencies;
LoadedTechnique(MaterialTechnique* technique, std::vector<XAssetInfoGeneric*> dependencies)
: m_technique(technique),
m_dependencies(std::move(dependencies))
{
}
};
class TechniqueZoneLoadingState final : public IZoneAssetLoaderState
{
public:
typedef const float (*literal_t)[4];
private:
std::unordered_map<std::string, std::unique_ptr<LoadedTechnique>> m_loaded_techniques;
std::map<techset::ShaderArgumentLiteralSource, literal_t> m_allocated_literals;
public:
_NODISCARD const LoadedTechnique* FindLoadedTechnique(const std::string& techniqueName) const
{
const auto loadedTechnique = m_loaded_techniques.find(techniqueName);
if (loadedTechnique != m_loaded_techniques.end())
return loadedTechnique->second.get();
return nullptr;
}
const LoadedTechnique* AddLoadedTechnique(std::string techniqueName, MaterialTechnique* technique, std::vector<XAssetInfoGeneric*> dependencies)
{
return m_loaded_techniques.emplace(std::make_pair(std::move(techniqueName), std::make_unique<LoadedTechnique>(technique, std::move(dependencies))))
.first->second.get();
}
literal_t GetAllocatedLiteral(MemoryManager* memory, techset::ShaderArgumentLiteralSource source)
{
const auto& existingEntry = m_allocated_literals.find(source);
if (existingEntry != m_allocated_literals.end())
return existingEntry->second;
auto* newLiteral = memory->Alloc<float[4]>();
(*newLiteral)[0] = source.m_value[0];
(*newLiteral)[1] = source.m_value[1];
(*newLiteral)[2] = source.m_value[2];
(*newLiteral)[3] = source.m_value[3];
m_allocated_literals.emplace(std::make_pair(source, newLiteral));
return newLiteral;
}
};
class ShaderInfoFromFileSystemCacheState final : public IZoneAssetLoaderState
{
std::unordered_map<std::string, std::unique_ptr<d3d9::ShaderInfo>> m_cached_shader_info;
public:
_NODISCARD const d3d9::ShaderInfo* LoadShaderInfoFromDisk(ISearchPath* searchPath, const std::string& fileName)
{
const auto cachedShaderInfo = m_cached_shader_info.find(fileName);
if (cachedShaderInfo != m_cached_shader_info.end())
return cachedShaderInfo->second.get();
const auto file = searchPath->Open(fileName);
if (!file.IsOpen())
return nullptr;
const auto shaderSize = static_cast<size_t>(file.m_length);
if (shaderSize % sizeof(uint32_t) != 0)
{
std::cerr << "Invalid shader \"" << fileName << "\": Size must be dividable by " << sizeof(uint32_t) << "\n";
return nullptr;
}
const auto shaderData = std::make_unique<char[]>(shaderSize);
file.m_stream->read(shaderData.get(), shaderSize);
auto shaderInfo = d3d9::ShaderAnalyser::GetShaderInfo(reinterpret_cast<const uint32_t*>(shaderData.get()), shaderSize);
if (!shaderInfo)
return nullptr;
const auto* result = shaderInfo.get();
m_cached_shader_info.emplace(std::make_pair(fileName, std::move(shaderInfo)));
return result;
}
};
class TechniqueCreator final : public techset::ITechniqueDefinitionAcceptor
{
const std::string& m_technique_name;
ISearchPath* const m_search_path;
MemoryManager* const m_memory;
IAssetLoadingManager* const m_manager;
TechniqueZoneLoadingState* const m_zone_state;
techset::TechniqueStateMapCache* const m_state_map_cache;
ShaderInfoFromFileSystemCacheState* const m_shader_info_cache;
public:
class PassShaderArgument
{
public:
MaterialShaderArgument m_arg;
MaterialUpdateFrequency m_update_frequency;
static MaterialUpdateFrequency GetUpdateFrequencyForArg(MaterialShaderArgument arg)
{
switch (arg.type)
{
case MTL_ARG_CODE_VERTEX_CONST:
case MTL_ARG_CODE_PIXEL_CONST:
if (arg.u.codeConst.index >= std::extent_v<decltype(s_codeConstUpdateFreq)>)
{
assert(false);
return MTL_UPDATE_RARELY;
}
return s_codeConstUpdateFreq[arg.u.codeConst.index];
case MTL_ARG_CODE_PIXEL_SAMPLER:
if (arg.u.codeSampler >= std::extent_v<decltype(s_codeSamplerUpdateFreq)>)
{
assert(false);
return MTL_UPDATE_RARELY;
}
return s_codeSamplerUpdateFreq[arg.u.codeSampler];
case MTL_ARG_MATERIAL_VERTEX_CONST:
case MTL_ARG_MATERIAL_PIXEL_SAMPLER:
case MTL_ARG_MATERIAL_PIXEL_CONST:
case MTL_ARG_LITERAL_VERTEX_CONST:
case MTL_ARG_LITERAL_PIXEL_CONST:
default:
return MTL_UPDATE_RARELY;
}
}
explicit PassShaderArgument(const MaterialShaderArgument arg)
: m_arg(arg),
m_update_frequency(GetUpdateFrequencyForArg(arg))
{
}
};
struct Pass
{
XAssetInfo<MaterialVertexShader>* m_vertex_shader;
const d3d9::ShaderInfo* m_vertex_shader_info;
std::unique_ptr<d3d9::ShaderInfo> m_vertex_shader_info_unq;
std::vector<size_t> m_vertex_shader_argument_handled_offset;
std::vector<bool> m_handled_vertex_shader_arguments;
XAssetInfo<MaterialPixelShader>* m_pixel_shader;
const d3d9::ShaderInfo* m_pixel_shader_info;
std::unique_ptr<d3d9::ShaderInfo> m_pixel_shader_info_unq;
std::vector<size_t> m_pixel_shader_argument_handled_offset;
std::vector<bool> m_handled_pixel_shader_arguments;
MaterialVertexDeclaration m_vertex_decl;
XAssetInfo<MaterialVertexDeclaration>* m_vertex_decl_asset;
std::vector<PassShaderArgument> m_arguments;
Pass()
: m_vertex_shader(nullptr),
m_vertex_shader_info(nullptr),
m_pixel_shader(nullptr),
m_pixel_shader_info(nullptr),
m_vertex_decl{},
m_vertex_decl_asset(nullptr)
{
}
};
std::vector<Pass> m_passes;
std::vector<XAssetInfoGeneric*> m_dependencies;
TechniqueCreator(const std::string& techniqueName,
ISearchPath* searchPath,
MemoryManager* memory,
IAssetLoadingManager* manager,
TechniqueZoneLoadingState* zoneState,
ShaderInfoFromFileSystemCacheState* shaderInfoCache,
techset::TechniqueStateMapCache* stateMapCache)
: m_technique_name(techniqueName),
m_search_path(searchPath),
m_memory(memory),
m_manager(manager),
m_zone_state(zoneState),
m_state_map_cache(stateMapCache),
m_shader_info_cache(shaderInfoCache)
{
}
void AcceptNextPass() override
{
m_passes.emplace_back();
}
static size_t RegisterCountPerElement(const d3d9::ShaderConstant& constant)
{
const auto valuesPerRegister =
constant.m_register_set == d3d9::RegisterSet::BOOL || constant.m_register_set == d3d9::RegisterSet::SAMPLER ? 1u : 4u;
return utils::Align(constant.m_type_columns * constant.m_type_rows, valuesPerRegister) / valuesPerRegister;
}
static bool IsSamplerArgument(const d3d9::ShaderConstant& constant)
{
return constant.m_type == d3d9::ParameterType::SAMPLER || constant.m_type == d3d9::ParameterType::SAMPLER_1D
|| constant.m_type == d3d9::ParameterType::SAMPLER_2D || constant.m_type == d3d9::ParameterType::SAMPLER_3D
|| constant.m_type == d3d9::ParameterType::SAMPLER_CUBE;
}
bool AutoCreateShaderArgument(const techset::ShaderSelector shaderType,
const d3d9::ShaderConstant& shaderArgument,
const size_t elementOffset,
const size_t registerOffset)
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
const auto isSamplerArgument = IsSamplerArgument(shaderArgument);
if (shaderType == techset::ShaderSelector::VERTEX_SHADER && isSamplerArgument)
return false;
MaterialShaderArgument argument{};
argument.dest = static_cast<uint16_t>(shaderArgument.m_register_index + registerOffset);
unsigned arrayCount;
const std::vector accessors({shaderArgument.m_name});
if (isSamplerArgument)
{
const CodeSamplerSource* samplerSource = FindCodeSamplerSource(accessors, s_codeSamplers);
if (!samplerSource)
samplerSource = FindCodeSamplerSource(accessors, s_defaultCodeSamplers);
if (!samplerSource)
return false;
argument.type = MTL_ARG_CODE_PIXEL_SAMPLER;
argument.u.codeSampler = samplerSource->source + elementOffset;
arrayCount = static_cast<unsigned>(samplerSource->arrayCount);
}
else
{
const CodeConstantSource* constantSource = FindCodeConstantSource(accessors, s_codeConsts);
if (!constantSource)
constantSource = FindCodeConstantSource(accessors, s_defaultCodeConsts);
if (!constantSource)
return false;
argument.type = shaderType == techset::ShaderSelector::VERTEX_SHADER ? MTL_ARG_CODE_VERTEX_CONST : MTL_ARG_CODE_PIXEL_CONST;
argument.u.codeConst.index = static_cast<uint16_t>(constantSource->source + elementOffset);
argument.u.codeConst.firstRow = 0u;
argument.u.codeConst.rowCount = static_cast<unsigned char>(shaderArgument.m_type_rows);
arrayCount = static_cast<unsigned>(constantSource->arrayCount);
}
if (elementOffset >= std::max(arrayCount, 1u))
return false;
pass.m_arguments.emplace_back(argument);
return true;
}
bool AutoCreateVertexShaderArguments(std::string& errorMessage)
{
assert(!m_passes.empty());
const auto& pass = m_passes.at(m_passes.size() - 1);
for (auto i = 0u; i < pass.m_vertex_shader_argument_handled_offset.size(); i++)
{
const auto& argument = pass.m_vertex_shader_info->m_constants[i];
const auto argumentHandledIndex = pass.m_vertex_shader_argument_handled_offset[i];
const auto argumentRegistersPerElement = argument.m_type_elements > 1u ? RegisterCountPerElement(argument) : argument.m_register_count;
auto elementIndex = 0u;
for (auto registerIndex = 0u; registerIndex < argument.m_register_count; registerIndex += argumentRegistersPerElement)
{
if (!pass.m_handled_vertex_shader_arguments[argumentHandledIndex + elementIndex])
{
if (!AutoCreateShaderArgument(techset::ShaderSelector::VERTEX_SHADER, argument, elementIndex, registerIndex))
{
std::ostringstream ss;
ss << "Unassigned vertex shader \"" << pass.m_vertex_shader->m_name << "\" arg: " << argument.m_name;
if (argument.m_type_elements > 1)
ss << '[' << elementIndex << ']';
errorMessage = ss.str();
return false;
}
}
elementIndex++;
}
}
return true;
}
bool AutoCreatePixelShaderArguments(std::string& errorMessage)
{
assert(!m_passes.empty());
const auto& pass = m_passes.at(m_passes.size() - 1);
for (auto i = 0u; i < pass.m_pixel_shader_argument_handled_offset.size(); i++)
{
const auto& argument = pass.m_pixel_shader_info->m_constants[i];
const auto argumentHandledIndex = pass.m_pixel_shader_argument_handled_offset[i];
const auto argumentRegistersPerElement = argument.m_type_elements > 1u ? RegisterCountPerElement(argument) : argument.m_register_count;
auto elementIndex = 0u;
for (auto registerIndex = 0u; registerIndex < argument.m_register_count; registerIndex += argumentRegistersPerElement)
{
if (!pass.m_handled_pixel_shader_arguments[argumentHandledIndex + elementIndex])
{
if (!AutoCreateShaderArgument(techset::ShaderSelector::PIXEL_SHADER, argument, elementIndex, registerIndex))
{
std::ostringstream ss;
ss << "Unassigned pixel shader \"" << pass.m_pixel_shader->m_name << "\" arg: " << argument.m_name;
if (argument.m_type_elements > 1)
ss << '[' << elementIndex << ']';
errorMessage = ss.str();
return false;
}
}
elementIndex++;
}
}
return true;
}
void AllocateVertexDecl()
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
std::sort(std::begin(pass.m_vertex_decl.routing.data),
std::begin(pass.m_vertex_decl.routing.data) + pass.m_vertex_decl.streamCount,
[](const MaterialStreamRouting& r1, const MaterialStreamRouting& r2)
{
return r1.source < r2.source;
});
std::ostringstream ss;
for (auto i = 0u; i < pass.m_vertex_decl.streamCount; i++)
{
const auto& stream = pass.m_vertex_decl.routing.data[i];
assert(stream.source < std::extent_v<decltype(materialStreamSourceAbbreviation)>);
assert(stream.dest < std::extent_v<decltype(materialStreamDestinationAbbreviation)>);
ss << materialStreamSourceAbbreviation[stream.source] << materialStreamDestinationAbbreviation[stream.dest];
}
pass.m_vertex_decl_asset = m_manager->LoadDependency<AssetVertexDecl>(ss.str());
}
bool AcceptEndPass(std::string& errorMessage) override
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
if (!AutoCreateVertexShaderArguments(errorMessage) || !AutoCreatePixelShaderArguments(errorMessage))
return false;
// Sort args by their update frequency
std::ranges::sort(pass.m_arguments,
[](const PassShaderArgument& arg1, const PassShaderArgument& arg2)
{
if (arg1.m_update_frequency != arg2.m_update_frequency)
return arg1.m_update_frequency < arg2.m_update_frequency;
if (arg1.m_arg.type != arg2.m_arg.type)
return arg1.m_arg.type < arg2.m_arg.type;
if (arg1.m_arg.type == MTL_ARG_MATERIAL_VERTEX_CONST || arg1.m_arg.type == MTL_ARG_MATERIAL_PIXEL_CONST
|| arg1.m_arg.type == MTL_ARG_MATERIAL_PIXEL_SAMPLER)
return arg1.m_arg.u.codeSampler < arg2.m_arg.u.codeSampler;
return arg1.m_arg.dest < arg2.m_arg.dest;
});
AllocateVertexDecl();
return true;
}
bool AcceptStateMap(const std::string& stateMapName, std::string& errorMessage) override
{
const auto* stateMap = AssetLoaderTechniqueSet::LoadStateMapDefinition(stateMapName, m_search_path, m_state_map_cache);
if (!stateMap)
{
std::ostringstream ss;
ss << "Failed to load specified state map \"" << stateMapName << "\"";
errorMessage = ss.str();
return false;
}
m_state_map_cache->SetTechniqueUsesStateMap(m_technique_name, stateMap);
return true;
}
static void InitializeArgumentState(const d3d9::ShaderInfo& shaderInfo,
std::vector<size_t>& argumentHandledOffsetVector,
std::vector<bool>& argumentHandledVector)
{
auto vertexShaderArgumentSlotCount = 0u;
auto argIndex = 0u;
argumentHandledOffsetVector.resize(shaderInfo.m_constants.size());
for (const auto& arg : shaderInfo.m_constants)
{
argumentHandledOffsetVector[argIndex++] = vertexShaderArgumentSlotCount;
if (arg.m_type_elements > 1)
vertexShaderArgumentSlotCount += arg.m_register_count / RegisterCountPerElement(arg);
else
vertexShaderArgumentSlotCount++;
}
argumentHandledVector.resize(vertexShaderArgumentSlotCount);
}
bool AcceptVertexShader(const std::string& vertexShaderName, std::string& errorMessage) override
{
auto* vertexShaderDependency = m_manager->LoadDependency<AssetVertexShader>(vertexShaderName);
if (vertexShaderDependency == nullptr)
{
std::ostringstream ss;
ss << "Failed to load specified shader \"" << vertexShaderName << "\"";
errorMessage = ss.str();
return false;
}
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
pass.m_vertex_shader = vertexShaderDependency;
if (pass.m_vertex_shader->Asset()->name && pass.m_vertex_shader->Asset()->name[0] == ',')
{
pass.m_vertex_shader_info =
m_shader_info_cache->LoadShaderInfoFromDisk(m_search_path, AssetLoaderVertexShader::GetFileNameForAsset(vertexShaderName));
}
else
{
const auto& shaderLoadDef = pass.m_vertex_shader->Asset()->prog.loadDef;
pass.m_vertex_shader_info_unq = d3d9::ShaderAnalyser::GetShaderInfo(shaderLoadDef.program, shaderLoadDef.programSize * sizeof(uint32_t));
pass.m_vertex_shader_info = pass.m_vertex_shader_info_unq.get();
}
if (!pass.m_vertex_shader_info)
{
std::ostringstream ss;
ss << "No shader info for shader \"" << vertexShaderName << "\"";
errorMessage = ss.str();
return false;
}
InitializeArgumentState(*pass.m_vertex_shader_info, pass.m_vertex_shader_argument_handled_offset, pass.m_handled_vertex_shader_arguments);
return true;
}
bool AcceptPixelShader(const std::string& pixelShaderName, std::string& errorMessage) override
{
auto* pixelShaderDependency = m_manager->LoadDependency<AssetPixelShader>(pixelShaderName);
if (pixelShaderDependency == nullptr)
{
std::ostringstream ss;
ss << "Failed to load specified shader \"" << pixelShaderName << "\"";
errorMessage = ss.str();
return false;
}
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
pass.m_pixel_shader = pixelShaderDependency;
if (pass.m_pixel_shader->Asset()->name && pass.m_pixel_shader->Asset()->name[0] == ',')
{
pass.m_pixel_shader_info =
m_shader_info_cache->LoadShaderInfoFromDisk(m_search_path, AssetLoaderPixelShader::GetFileNameForAsset(pixelShaderName));
}
else
{
const auto& shaderLoadDef = pass.m_pixel_shader->Asset()->prog.loadDef;
pass.m_pixel_shader_info_unq = d3d9::ShaderAnalyser::GetShaderInfo(shaderLoadDef.program, shaderLoadDef.programSize * sizeof(uint32_t));
pass.m_pixel_shader_info = pass.m_pixel_shader_info_unq.get();
}
if (!pass.m_pixel_shader_info)
{
std::ostringstream ss;
ss << "No shader info for shader \"" << pixelShaderName << "\"";
errorMessage = ss.str();
return false;
}
InitializeArgumentState(*pass.m_pixel_shader_info, pass.m_pixel_shader_argument_handled_offset, pass.m_handled_pixel_shader_arguments);
return true;
}
static const CodeConstantSource* FindCodeConstantSource(const std::vector<std::string>& accessors, const CodeConstantSource* sourceTable)
{
const CodeConstantSource* foundSource = nullptr;
const CodeConstantSource* currentTable = sourceTable;
for (const auto& accessor : accessors)
{
if (currentTable == nullptr)
return nullptr;
while (true)
{
if (currentTable->name == nullptr)
return nullptr;
if (accessor == currentTable->name)
break;
currentTable++;
}
foundSource = currentTable;
currentTable = currentTable->subtable;
}
return foundSource;
}
static const CodeSamplerSource* FindCodeSamplerSource(const std::vector<std::string>& accessors, const CodeSamplerSource* sourceTable)
{
const CodeSamplerSource* foundSource = nullptr;
const CodeSamplerSource* currentTable = sourceTable;
for (const auto& accessor : accessors)
{
if (currentTable == nullptr)
return nullptr;
while (true)
{
if (currentTable->name == nullptr)
return nullptr;
if (accessor == currentTable->name)
break;
currentTable++;
}
foundSource = currentTable;
currentTable = currentTable->subtable;
}
return foundSource;
}
bool FindShaderArgument(const d3d9::ShaderInfo& shaderInfo,
const techset::ShaderArgument& argument,
size_t& constantIndex,
size_t& registerOffset,
std::string& errorMessage) const
{
const auto matchingShaderConstant = std::ranges::find_if(shaderInfo.m_constants,
[argument](const d3d9::ShaderConstant& constant)
{
return constant.m_name == argument.m_argument_name;
});
if (matchingShaderConstant == shaderInfo.m_constants.end())
{
errorMessage = "Could not find argument in shader";
return false;
}
if (argument.m_argument_index_specified)
{
if (matchingShaderConstant->m_type_elements <= 1)
{
errorMessage = "Argument does not have more than one element";
return false;
}
const auto registersPerElement = RegisterCountPerElement(*matchingShaderConstant);
if (argument.m_argument_index >= matchingShaderConstant->m_register_count / registersPerElement)
{
errorMessage = "Argument index out of bounds";
return false;
}
registerOffset = argument.m_argument_index * registersPerElement;
}
else if (matchingShaderConstant->m_type_elements > 1)
{
errorMessage = "Argument has more than one element and needs to be accessed with an index";
return false;
}
else
{
registerOffset = 0u;
}
constantIndex = static_cast<size_t>(matchingShaderConstant - shaderInfo.m_constants.begin());
return true;
}
static bool SetArgumentCodeConst(MaterialShaderArgument& argument,
const techset::ShaderArgumentCodeSource& source,
const d3d9::ShaderConstant& shaderConstant,
const unsigned sourceIndex,
const unsigned arrayCount,
std::string& errorMessage)
{
if (arrayCount > 0u)
{
if (!source.m_index_accessor_specified)
{
errorMessage = "Code constant must have array index specified";
return false;
}
if (source.m_index_accessor >= arrayCount)
{
errorMessage = "Code constant array index out of bounds";
return false;
}
argument.u.codeConst.index = static_cast<uint16_t>(sourceIndex + source.m_index_accessor);
}
else if (source.m_index_accessor_specified)
{
errorMessage = "Code constant cannot have array index specified";
return false;
}
else
{
argument.u.codeConst.index = static_cast<uint16_t>(sourceIndex);
}
argument.u.codeConst.firstRow = 0u;
argument.u.codeConst.rowCount = static_cast<unsigned char>(shaderConstant.m_type_rows);
return true;
}
static bool SetArgumentCodeSampler(MaterialShaderArgument& argument,
const techset::ShaderArgumentCodeSource& source,
const d3d9::ShaderConstant& shaderConstant,
const unsigned sourceIndex,
const unsigned arrayCount,
std::string& errorMessage)
{
if (arrayCount > 0u)
{
if (!source.m_index_accessor_specified)
{
errorMessage = "Code constant must have array index specified";
return false;
}
if (source.m_index_accessor >= arrayCount)
{
errorMessage = "Code constant array index out of bounds";
return false;
}
argument.u.codeSampler = sourceIndex + source.m_index_accessor;
}
else if (source.m_index_accessor_specified)
{
errorMessage = "Code constant cannot have array index specified";
return false;
}
else
{
argument.u.codeSampler = sourceIndex;
}
return true;
}
bool AcceptVertexShaderConstantArgument(const techset::ShaderArgument& shaderArgument,
const techset::ShaderArgumentCodeSource& source,
std::string& errorMessage)
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
if (!pass.m_vertex_shader_info)
{
errorMessage = "Shader not specified";
return false;
}
size_t shaderConstantIndex = 0u;
size_t registerOffset = 0u;
if (!FindShaderArgument(*pass.m_vertex_shader_info, shaderArgument, shaderConstantIndex, registerOffset, errorMessage))
return false;
const auto elementOffset = shaderArgument.m_argument_index_specified ? shaderArgument.m_argument_index : 0u;
const auto& shaderConstant = pass.m_vertex_shader_info->m_constants[shaderConstantIndex];
const auto argumentIsSampler = IsSamplerArgument(shaderConstant);
if (argumentIsSampler)
{
errorMessage = "Vertex shader argument expected sampler but got constant";
return false;
}
MaterialShaderArgument argument{};
argument.type = MTL_ARG_CODE_VERTEX_CONST;
argument.dest = static_cast<uint16_t>(shaderConstant.m_register_index + registerOffset);
const CodeConstantSource* constantSource = FindCodeConstantSource(source.m_accessors, s_codeConsts);
if (!constantSource)
constantSource = FindCodeConstantSource(source.m_accessors, s_defaultCodeConsts);
if (!constantSource)
{
errorMessage = "Unknown code constant";
return false;
}
if (!SetArgumentCodeConst(argument, source, shaderConstant, constantSource->source, constantSource->arrayCount, errorMessage))
return false;
pass.m_arguments.emplace_back(argument);
pass.m_handled_vertex_shader_arguments[pass.m_vertex_shader_argument_handled_offset[shaderConstantIndex] + elementOffset] = true;
return true;
}
bool AcceptPixelShaderCodeArgument(const techset::ShaderArgument& shaderArgument,
const techset::ShaderArgumentCodeSource& source,
std::string& errorMessage,
const bool isSampler)
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
if (!pass.m_pixel_shader_info)
{
errorMessage = "Shader not specified";
return false;
}
size_t shaderConstantIndex = 0u;
size_t registerOffset = 0u;
if (!FindShaderArgument(*pass.m_pixel_shader_info, shaderArgument, shaderConstantIndex, registerOffset, errorMessage))
return false;
const auto elementOffset = shaderArgument.m_argument_index_specified ? shaderArgument.m_argument_index : 0u;
const auto& shaderConstant = pass.m_pixel_shader_info->m_constants[shaderConstantIndex];
const auto argumentIsSampler = IsSamplerArgument(shaderConstant);
if (argumentIsSampler && !isSampler)
{
errorMessage = "Pixel shader argument expects sampler but got constant";
return false;
}
else if (!argumentIsSampler && isSampler)
{
errorMessage = "Pixel shader argument expects constant but got sampler";
return false;
}
MaterialShaderArgument argument{};
argument.type = isSampler ? MTL_ARG_CODE_PIXEL_SAMPLER : MTL_ARG_CODE_PIXEL_CONST;
argument.dest = static_cast<uint16_t>(shaderConstant.m_register_index + registerOffset);
unsigned sourceIndex, arrayCount;
if (isSampler)
{
const CodeSamplerSource* samplerSource = FindCodeSamplerSource(source.m_accessors, s_codeSamplers);
if (!samplerSource)
samplerSource = FindCodeSamplerSource(source.m_accessors, s_defaultCodeSamplers);
if (!samplerSource)
{
errorMessage = "Unknown code sampler";
return false;
}
sourceIndex = static_cast<unsigned>(samplerSource->source);
arrayCount = static_cast<unsigned>(samplerSource->arrayCount);
if (!SetArgumentCodeSampler(argument, source, shaderConstant, sourceIndex, arrayCount, errorMessage))
return false;
}
else
{
const CodeConstantSource* constantSource = FindCodeConstantSource(source.m_accessors, s_codeConsts);
if (!constantSource)
constantSource = FindCodeConstantSource(source.m_accessors, s_defaultCodeConsts);
if (!constantSource)
{
errorMessage = "Unknown code constant";
return false;
}
sourceIndex = static_cast<unsigned>(constantSource->source);
arrayCount = static_cast<unsigned>(constantSource->arrayCount);
if (!SetArgumentCodeConst(argument, source, shaderConstant, sourceIndex, arrayCount, errorMessage))
return false;
}
pass.m_arguments.emplace_back(argument);
pass.m_handled_pixel_shader_arguments[pass.m_pixel_shader_argument_handled_offset[shaderConstantIndex] + elementOffset] = true;
return true;
}
bool AcceptShaderConstantArgument(const techset::ShaderSelector shader,
const techset::ShaderArgument shaderArgument,
const techset::ShaderArgumentCodeSource source,
std::string& errorMessage) override
{
if (shader == techset::ShaderSelector::VERTEX_SHADER)
return AcceptVertexShaderConstantArgument(shaderArgument, source, errorMessage);
assert(shader == techset::ShaderSelector::PIXEL_SHADER);
return AcceptPixelShaderCodeArgument(shaderArgument, source, errorMessage, false);
}
bool AcceptShaderSamplerArgument(const techset::ShaderSelector shader,
const techset::ShaderArgument shaderArgument,
const techset::ShaderArgumentCodeSource source,
std::string& errorMessage) override
{
if (shader == techset::ShaderSelector::VERTEX_SHADER)
{
errorMessage = "Vertex sampler are unsupported";
return false;
}
assert(shader == techset::ShaderSelector::PIXEL_SHADER);
return AcceptPixelShaderCodeArgument(shaderArgument, source, errorMessage, true);
}
bool AcceptShaderLiteralArgument(const techset::ShaderSelector shader,
techset::ShaderArgument shaderArgument,
techset::ShaderArgumentLiteralSource source,
std::string& errorMessage) override
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
MaterialShaderArgument argument{};
const d3d9::ShaderInfo* shaderInfo;
if (shader == techset::ShaderSelector::VERTEX_SHADER)
{
argument.type = MTL_ARG_LITERAL_VERTEX_CONST;
shaderInfo = pass.m_vertex_shader_info;
}
else
{
assert(shader == techset::ShaderSelector::PIXEL_SHADER);
argument.type = MTL_ARG_LITERAL_PIXEL_CONST;
shaderInfo = pass.m_pixel_shader_info;
}
if (!shaderInfo)
{
errorMessage = "Shader not specified";
return false;
}
size_t shaderConstantIndex = 0u;
size_t registerOffset = 0u;
if (!FindShaderArgument(*shaderInfo, shaderArgument, shaderConstantIndex, registerOffset, errorMessage))
return false;
const auto elementOffset = shaderArgument.m_argument_index_specified ? shaderArgument.m_argument_index : 0u;
const auto& shaderConstant = shaderInfo->m_constants[shaderConstantIndex];
const auto argumentIsSampler = IsSamplerArgument(shaderConstant);
if (argumentIsSampler)
{
if (shader == techset::ShaderSelector::VERTEX_SHADER)
errorMessage = "Vertex shader argument expects sampler but got constant";
else
errorMessage = "Pixel shader argument expects sampler but got constant";
return false;
}
argument.dest = static_cast<uint16_t>(shaderConstant.m_register_index + registerOffset);
argument.u.literalConst = m_zone_state->GetAllocatedLiteral(m_memory, source);
pass.m_arguments.emplace_back(argument);
if (shader == techset::ShaderSelector::VERTEX_SHADER)
pass.m_handled_vertex_shader_arguments[pass.m_vertex_shader_argument_handled_offset[shaderConstantIndex] + elementOffset] = true;
else
pass.m_handled_pixel_shader_arguments[pass.m_pixel_shader_argument_handled_offset[shaderConstantIndex] + elementOffset] = true;
return true;
}
bool AcceptShaderMaterialArgument(const techset::ShaderSelector shader,
techset::ShaderArgument shaderArgument,
const techset::ShaderArgumentMaterialSource source,
std::string& errorMessage) override
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
MaterialShaderArgument argument{};
const d3d9::ShaderInfo* shaderInfo;
if (shader == techset::ShaderSelector::VERTEX_SHADER)
{
shaderInfo = pass.m_vertex_shader_info;
}
else
{
assert(shader == techset::ShaderSelector::PIXEL_SHADER);
shaderInfo = pass.m_pixel_shader_info;
}
if (!shaderInfo)
{
errorMessage = "Shader not specified";
return false;
}
size_t shaderConstantIndex = 0u;
size_t registerOffset = 0u;
if (!FindShaderArgument(*shaderInfo, shaderArgument, shaderConstantIndex, registerOffset, errorMessage))
return false;
const auto elementOffset = shaderArgument.m_argument_index_specified ? shaderArgument.m_argument_index : 0u;
const auto& shaderConstant = shaderInfo->m_constants[shaderConstantIndex];
const auto argumentIsSampler = IsSamplerArgument(shaderConstant);
if (shader == techset::ShaderSelector::VERTEX_SHADER)
{
if (argumentIsSampler)
{
errorMessage = "Vertex sampler are unsupported";
return false;
}
argument.type = MTL_ARG_MATERIAL_VERTEX_CONST;
}
else
{
assert(shader == techset::ShaderSelector::PIXEL_SHADER);
argument.type = !argumentIsSampler ? MTL_ARG_MATERIAL_PIXEL_CONST : MTL_ARG_MATERIAL_PIXEL_SAMPLER;
}
if (source.m_is_hash)
argument.u.nameHash = static_cast<unsigned>(source.m_hash);
else
argument.u.nameHash = Common::R_HashString(source.m_name.c_str(), 0u);
argument.dest = static_cast<uint16_t>(shaderConstant.m_register_index + registerOffset);
pass.m_arguments.emplace_back(argument);
if (shader == techset::ShaderSelector::VERTEX_SHADER)
pass.m_handled_vertex_shader_arguments[pass.m_vertex_shader_argument_handled_offset[shaderConstantIndex] + elementOffset] = true;
else
pass.m_handled_pixel_shader_arguments[pass.m_pixel_shader_argument_handled_offset[shaderConstantIndex] + elementOffset] = true;
return true;
}
bool AcceptVertexStreamRouting(const std::string& destination, const std::string& source, std::string& errorMessage) override
{
assert(!m_passes.empty());
auto& pass = m_passes.at(m_passes.size() - 1);
const auto streamIndex = static_cast<size_t>(pass.m_vertex_decl.streamCount);
if (pass.m_vertex_decl.streamCount >= std::extent_v<decltype(MaterialVertexStreamRouting::data)>)
{
errorMessage = "Too many stream routings";
return false;
}
const auto foundDestination = std::ranges::find(materialStreamDestinationNames, destination);
if (foundDestination == std::end(materialStreamDestinationNames))
{
errorMessage = "Unknown stream destination";
return false;
}
const auto foundSource = std::ranges::find(materialStreamSourceNames, source);
if (foundSource == std::end(materialStreamSourceNames))
{
errorMessage = "Unknown stream source";
return false;
}
const auto destinationIndex = static_cast<MaterialStreamDestination_e>(foundDestination - std::begin(materialStreamDestinationNames));
const auto sourceIndex = static_cast<MaterialStreamStreamSource_e>(foundSource - std::begin(materialStreamSourceNames));
pass.m_vertex_decl.routing.data[streamIndex].dest = destinationIndex;
pass.m_vertex_decl.routing.data[streamIndex].source = sourceIndex;
pass.m_vertex_decl.hasOptionalSource = pass.m_vertex_decl.hasOptionalSource || sourceIndex >= STREAM_SRC_OPTIONAL_BEGIN;
pass.m_vertex_decl.streamCount++;
return true;
}
};
class TechniqueLoader
{
ISearchPath* m_search_path;
MemoryManager* m_memory;
IAssetLoadingManager* m_manager;
TechniqueZoneLoadingState* m_zone_state;
ShaderInfoFromFileSystemCacheState* m_shader_info_cache;
techset::TechniqueStateMapCache* m_state_map_cache;
static void UpdateTechniqueFlags(MaterialTechnique& technique)
{
// This is stupid but that's what the game does for zprepass for sure
// The other ones might be handled by the game in the same fashion because there is not recognizable pattern that connects the shaders with the same
// flags
static std::unordered_map<std::string, size_t> flagsByTechniqueName({
{"zprepass", TECHNIQUE_FLAG_4 | TECHNIQUE_FLAG_200 },
{"build_floatz", TECHNIQUE_FLAG_8 },
{"build_shadowmap_depth", TECHNIQUE_FLAG_10 | TECHNIQUE_FLAG_200},
{"build_shadowmap_model", TECHNIQUE_FLAG_10 | TECHNIQUE_FLAG_200},
{"distortion_scale_ua_zfeather", TECHNIQUE_FLAG_100 },
{"distortion_scale_zfeather", TECHNIQUE_FLAG_100 },
{"distortion_scale_zfeather_dtex", TECHNIQUE_FLAG_100 },
{"alternate_scene_overlay", TECHNIQUE_FLAG_200 },
{"blur_apply", TECHNIQUE_FLAG_200 },
{"build_floatz", TECHNIQUE_FLAG_200 },
{"build_floatz_clear", TECHNIQUE_FLAG_200 },
{"build_floatz_dtex", TECHNIQUE_FLAG_200 },
{"build_floatz_ua", TECHNIQUE_FLAG_200 },
{"build_floatz_ua_dtex", TECHNIQUE_FLAG_200 },
{"build_shadowmap_depth_nc", TECHNIQUE_FLAG_200 },
{"build_shadowmap_depth_ua", TECHNIQUE_FLAG_200 },
{"build_shadowmap_model_dtex", TECHNIQUE_FLAG_200 },
{"build_shadowmap_model_nc_dtex", TECHNIQUE_FLAG_200 },
{"build_shadowmap_model_ua", TECHNIQUE_FLAG_200 },
{"cinematic", TECHNIQUE_FLAG_200 },
{"cinematic_3d", TECHNIQUE_FLAG_200 },
{"cinematic_dtex_3d", TECHNIQUE_FLAG_200 },
{"dof_near_coc", TECHNIQUE_FLAG_200 },
{"floatz", TECHNIQUE_FLAG_200 },
{"floatzdisplay", TECHNIQUE_FLAG_200 },
{"particle_blend", TECHNIQUE_FLAG_200 },
{"particle_zdownsample", TECHNIQUE_FLAG_200 },
{"passthru_alpha", TECHNIQUE_FLAG_200 },
{"postfx", TECHNIQUE_FLAG_200 },
{"postfx_mblur", TECHNIQUE_FLAG_200 },
{"processed_floatz", TECHNIQUE_FLAG_200 },
{"ps3_aadownsample", TECHNIQUE_FLAG_200 },
{"shell_shock", TECHNIQUE_FLAG_200 },
{"shell_shock_flashed", TECHNIQUE_FLAG_200 },
{"small_blur", TECHNIQUE_FLAG_200 },
{"stencildisplay", TECHNIQUE_FLAG_200 },
{"stencilshadow", TECHNIQUE_FLAG_200 },
{"wireframe_solid", TECHNIQUE_FLAG_200 },
{"wireframe_solid_atest_dtex", TECHNIQUE_FLAG_200 },
{"wireframe_solid_dtex", TECHNIQUE_FLAG_200 },
{"wireframe_solid_nc", TECHNIQUE_FLAG_200 },
{"wireframe_solid_nc_dtex", TECHNIQUE_FLAG_200 },
{"wireframe_solid_ua", TECHNIQUE_FLAG_200 },
{"wireframe_solid_ua_dtex", TECHNIQUE_FLAG_200 },
});
const auto flagsForName = flagsByTechniqueName.find(technique.name);
if (flagsForName != flagsByTechniqueName.end())
{
technique.flags |= flagsForName->second;
}
for (auto i = 0u; i < technique.passCount; i++)
{
const auto& pass = technique.passArray[i];
if (pass.vertexDecl && pass.vertexDecl->hasOptionalSource)
{
technique.flags |= TECHNIQUE_FLAG_20;
break;
}
}
}
static void UpdateTechniqueFlagsForArgument(uint16_t& techniqueFlags, const TechniqueCreator::PassShaderArgument& arg)
{
if (arg.m_arg.type == MTL_ARG_CODE_PIXEL_SAMPLER)
{
switch (arg.m_arg.u.codeSampler)
{
case TEXTURE_SRC_CODE_RESOLVED_POST_SUN:
techniqueFlags |= TECHNIQUE_FLAG_1;
break;
case TEXTURE_SRC_CODE_RESOLVED_SCENE:
techniqueFlags |= TECHNIQUE_FLAG_2;
break;
case TEXTURE_SRC_CODE_FLOATZ:
case TEXTURE_SRC_CODE_PROCESSED_FLOATZ:
case TEXTURE_SRC_CODE_RAW_FLOATZ:
if ((techniqueFlags & TECHNIQUE_FLAG_100) == 0)
techniqueFlags |= TECHNIQUE_FLAG_80;
break;
default:
break;
}
}
else if (arg.m_arg.type == MTL_ARG_CODE_VERTEX_CONST || arg.m_arg.type == MTL_ARG_CODE_PIXEL_CONST)
{
switch (arg.m_arg.u.codeConst.index)
{
case CONST_SRC_CODE_LIGHT_SPOTDIR:
case CONST_SRC_CODE_LIGHT_SPOTFACTORS:
techniqueFlags |= TECHNIQUE_FLAG_40;
break;
default:
break;
}
}
}
void ConvertPass(MaterialTechnique& technique, MaterialPass& out, const TechniqueCreator::Pass& in, std::vector<XAssetInfoGeneric*>& dependencies) const
{
out.customSamplerFlags = 0u;
out.vertexShader = in.m_vertex_shader->Asset();
out.pixelShader = in.m_pixel_shader->Asset();
out.vertexDecl = in.m_vertex_decl_asset->Asset();
out.args = m_memory->Alloc<MaterialShaderArgument>(in.m_arguments.size());
size_t perObjArgCount = 0u;
size_t perPrimArgCount = 0u;
size_t stableArgCount = 0u;
size_t argIndex = 0u;
for (const auto& arg : in.m_arguments)
{
UpdateTechniqueFlagsForArgument(technique.flags, arg);
switch (arg.m_update_frequency)
{
case MTL_UPDATE_PER_PRIM:
perPrimArgCount++;
break;
case MTL_UPDATE_PER_OBJECT:
perObjArgCount++;
break;
case MTL_UPDATE_RARELY:
stableArgCount++;
break;
case MTL_UPDATE_CUSTOM:
{
assert(arg.m_arg.type == MTL_ARG_CODE_PIXEL_SAMPLER);
if (arg.m_arg.type == MTL_ARG_CODE_PIXEL_SAMPLER)
{
const auto customSampler = std::ranges::find(g_customSamplerSrc, arg.m_arg.u.codeSampler);
assert(customSampler != std::end(g_customSamplerSrc));
if (customSampler != std::end(g_customSamplerSrc))
{
const auto customSamplerIndex = customSampler - std::begin(g_customSamplerSrc);
out.customSamplerFlags |= 1 << customSamplerIndex;
}
}
}
continue;
default:
assert(false);
continue;
}
out.args[argIndex++] = arg.m_arg;
}
out.perObjArgCount = static_cast<unsigned char>(perObjArgCount);
out.perPrimArgCount = static_cast<unsigned char>(perPrimArgCount);
out.stableArgCount = static_cast<unsigned char>(stableArgCount);
if (in.m_vertex_shader)
dependencies.push_back(in.m_vertex_shader);
if (in.m_pixel_shader)
dependencies.push_back(in.m_pixel_shader);
if (in.m_vertex_decl_asset)
dependencies.push_back(in.m_vertex_decl_asset);
}
MaterialTechnique* ConvertTechnique(const std::string& techniqueName,
const std::vector<TechniqueCreator::Pass>& passes,
std::vector<XAssetInfoGeneric*>& dependencies) const
{
assert(!passes.empty());
const auto techniqueSize = sizeof(MaterialTechnique) + (passes.size() - 1u) * sizeof(MaterialPass);
auto* technique = static_cast<MaterialTechnique*>(m_memory->AllocRaw(techniqueSize));
technique->name = m_memory->Dup(techniqueName.c_str());
technique->passCount = static_cast<uint16_t>(passes.size());
UpdateTechniqueFlags(*technique);
for (auto i = 0u; i < passes.size(); i++)
ConvertPass(*technique, technique->passArray[i], passes.at(i), dependencies);
return technique;
}
MaterialTechnique* LoadTechniqueFromRaw(const std::string& techniqueName, std::vector<XAssetInfoGeneric*>& dependencies) const
{
const auto techniqueFileName = AssetLoaderTechniqueSet::GetTechniqueFileName(techniqueName);
const auto file = m_search_path->Open(techniqueFileName);
if (!file.IsOpen())
return nullptr;
TechniqueCreator creator(techniqueName, m_search_path, m_memory, m_manager, m_zone_state, m_shader_info_cache, m_state_map_cache);
const techset::TechniqueFileReader reader(*file.m_stream, techniqueFileName, &creator);
if (!reader.ReadTechniqueDefinition())
return nullptr;
return ConvertTechnique(techniqueName, creator.m_passes, dependencies);
}
public:
TechniqueLoader(ISearchPath* searchPath, MemoryManager* memory, IAssetLoadingManager* manager)
: m_search_path(searchPath),
m_memory(memory),
m_manager(manager),
m_zone_state(manager->GetAssetLoadingContext()->GetZoneAssetLoaderState<TechniqueZoneLoadingState>()),
m_shader_info_cache(manager->GetAssetLoadingContext()->GetZoneAssetLoaderState<ShaderInfoFromFileSystemCacheState>()),
m_state_map_cache(manager->GetAssetLoadingContext()->GetZoneAssetLoaderState<techset::TechniqueStateMapCache>())
{
}
_NODISCARD const LoadedTechnique* LoadMaterialTechnique(const std::string& techniqueName) const
{
auto* technique = m_zone_state->FindLoadedTechnique(techniqueName);
if (technique)
return technique;
std::vector<XAssetInfoGeneric*> dependencies;
auto* techniqueFromRaw = LoadTechniqueFromRaw(techniqueName, dependencies);
if (techniqueFromRaw == nullptr)
return nullptr;
return m_zone_state->AddLoadedTechnique(techniqueName, techniqueFromRaw, dependencies);
}
};
} // namespace IW4
void* AssetLoaderTechniqueSet::CreateEmptyAsset(const std::string& assetName, MemoryManager* memory)
{
auto* techset = memory->Create<MaterialTechniqueSet>();
memset(techset, 0, sizeof(MaterialTechniqueSet));
techset->name = memory->Dup(assetName.c_str());
return techset;
}
std::string AssetLoaderTechniqueSet::GetTechsetFileName(const std::string& techsetAssetName)
{
std::ostringstream ss;
ss << "techsets/" << techsetAssetName << ".techset";
return ss.str();
}
std::string AssetLoaderTechniqueSet::GetTechniqueFileName(const std::string& techniqueName)
{
std::ostringstream ss;
ss << "techniques/" << techniqueName << ".tech";
return ss.str();
}
std::string AssetLoaderTechniqueSet::GetStateMapFileName(const std::string& stateMapName)
{
std::ostringstream ss;
ss << "statemaps/" << stateMapName << ".sm";
return ss.str();
}
bool AssetLoaderTechniqueSet::CreateTechsetFromDefinition(
const std::string& assetName, const techset::TechsetDefinition& definition, ISearchPath* searchPath, MemoryManager* memory, IAssetLoadingManager* manager)
{
auto* techset = memory->Create<MaterialTechniqueSet>();
memset(techset, 0, sizeof(MaterialTechniqueSet));
techset->name = memory->Dup(assetName.c_str());
const TechniqueLoader techniqueLoader(searchPath, memory, manager);
std::set<XAssetInfoGeneric*> dependencies;
for (auto i = 0u; i < std::extent_v<decltype(MaterialTechniqueSet::techniques)>; i++)
{
std::string techniqueName;
if (definition.GetTechniqueByIndex(i, techniqueName))
{
auto* technique = techniqueLoader.LoadMaterialTechnique(techniqueName);
if (!technique)
return false;
for (auto* techniqueDependency : technique->m_dependencies)
dependencies.emplace(techniqueDependency);
techset->techniques[i] = technique->m_technique;
}
}
manager->AddAsset(ASSET_TYPE_TECHNIQUE_SET, assetName, techset, std::vector(dependencies.begin(), dependencies.end()), std::vector<scr_string_t>());
return true;
}
techset::TechsetDefinition*
AssetLoaderTechniqueSet::LoadTechsetDefinition(const std::string& assetName, ISearchPath* searchPath, techset::TechsetDefinitionCache* definitionCache)
{
auto* cachedTechsetDefinition = definitionCache->GetCachedTechsetDefinition(assetName);
if (cachedTechsetDefinition)
return cachedTechsetDefinition;
const auto techsetFileName = GetTechsetFileName(assetName);
const auto file = searchPath->Open(techsetFileName);
if (!file.IsOpen())
return nullptr;
const techset::TechsetFileReader reader(*file.m_stream, techsetFileName, techniqueTypeNames, std::extent_v<decltype(techniqueTypeNames)>);
auto techsetDefinition = reader.ReadTechsetDefinition();
auto* techsetDefinitionPtr = techsetDefinition.get();
definitionCache->AddTechsetDefinitionToCache(assetName, std::move(techsetDefinition));
return techsetDefinitionPtr;
}
const state_map::StateMapDefinition*
AssetLoaderTechniqueSet::LoadStateMapDefinition(const std::string& stateMapName, ISearchPath* searchPath, techset::TechniqueStateMapCache* stateMapCache)
{
auto* cachedStateMap = stateMapCache->GetCachedStateMap(stateMapName);
if (cachedStateMap)
return cachedStateMap;
const auto stateMapFileName = GetStateMapFileName(stateMapName);
const auto file = searchPath->Open(stateMapFileName);
if (!file.IsOpen())
return nullptr;
const state_map::StateMapReader reader(*file.m_stream, stateMapFileName, stateMapName, stateMapLayout);
auto stateMapDefinition = reader.ReadStateMapDefinition();
if (!stateMapDefinition)
return nullptr;
const auto* stateMapDefinitionPtr = stateMapDefinition.get();
stateMapCache->AddStateMapToCache(std::move(stateMapDefinition));
return stateMapDefinitionPtr;
}
bool AssetLoaderTechniqueSet::CanLoadFromRaw() const
{
return true;
}
bool AssetLoaderTechniqueSet::LoadFromRaw(
const std::string& assetName, ISearchPath* searchPath, MemoryManager* memory, IAssetLoadingManager* manager, Zone* zone) const
{
auto* definitionCache = manager->GetAssetLoadingContext()->GetZoneAssetLoaderState<techset::TechsetDefinitionCache>();
const auto* techsetDefinition = LoadTechsetDefinition(assetName, searchPath, definitionCache);
if (techsetDefinition)
return CreateTechsetFromDefinition(assetName, *techsetDefinition, searchPath, memory, manager);
return false;
}